A current sensing completion detection method for asynchronous pipelines operating in the sub-threshold regime

Omer Can Akgun*, †, Frank K. Gürkaynak and Yusuf Leblebici

Swiss Federal Institute of Technology (EPFL), Microelectronic Systems Laboratory (LSM), Lausanne CH-1015, Switzerland

SUMMARY

Digital circuits operating in the sub-threshold regime are able to perform minimum energy operation at a given delay. In the sub-threshold regime the circuit delay, and hence, the leakage energy consumption depend on the supply voltage exponentially. By reducing the idle time of the circuit, the energy-minimum supply voltage can be reduced, resulting in lower energy consumption.

This paper first presents an energy model for comparing synchronous and asynchronous sub-threshold operation. After the presentation of the model, design and simulation results of a novel current sensing based completion detection circuit that is applicable to coarse-grained single-rail asynchronous pipelines working in the sub-threshold regime is shown. The system works by sensing the changes in the current consumption of static CMOS combinational blocks and generates completion signals delayed in proportion to the computation taking place.

The method is applied as a proof of concept to the operation of a static CMOS 16-bit adder logic block that has been designed using conventional EDA tools for a 0.18 μm CMOS process. When operating with a supply voltage of 220 mV, speed improvements of up to 19.3% have been observed in the operation of the circuit. If the system is operated at the asynchronous energy-minimum supply voltage, an energy consumption reduction of 17% can be realized for the same computation load. Copyright © 2008 John Wiley & Sons, Ltd.

KEY WORDS: sub-threshold; asynchronous; CMOS logic; completion detection; current sensing

1. INTRODUCTION

Power density and power consumption of complex digital systems have become a major concern during the recent years, both due to thermal concerns and due to limited battery life-time in mobile

*Correspondence to: Omer Can Akgun, Swiss Federal Institute of Technology (EPFL), Microelectronic Systems Laboratory (LSM), Lausanne CH-1015, Switzerland.
†E-mail: omercan.akgun@epfl.ch

Copyright © 2008 John Wiley & Sons, Ltd.
applications. Any significant reduction in power dissipation can only be achieved by lowering the operating voltage of the circuits [1]. This would be possible by relaxing the constraints of classical strong-inversion operation of MOSFETs, and by accepting the notion that transistors can (and will) be operated well below threshold, in the sub-threshold (weak-inversion) regime.

In sub-threshold mode of operation, the supply voltage can be scaled aggressively and power dissipation can be decreased significantly. Sub-threshold operation of static CMOS logic has been analyzed using the EKV model in [2]. In this analysis, it was shown that static CMOS logic can be operated with a supply voltage as low as 50 mV at ambient temperature. There are several successful implementations of digital circuits operating in the sub-threshold regime in the literature, such as an FFT processor that is operational down to 180 mV [3] and a sub-threshold SRAM that operates with a supply voltage of 160 mV [4].

Circuits operating at these extreme low supply voltages work at much lower speeds, as an example the FFT processor presented in [3] works with a maximum clock frequency of 10 kHz with a power supply of 350 mV. Even so, their extremely low power consumption results in excellent power delay product values, making such circuits very interesting candidates for ultra-low power applications that do not have very high processing requirements.

In the sub-threshold regime the leakage energy of the circuit increases exponentially with decreasing supply voltage as explained in Section 2. At the same time the dynamic energy consumption of a circuit operating in the sub-threshold regime decreases quadratically with decreasing supply voltage. Therefore for circuits operating in the sub-threshold regime a supply voltage that minimizes the sum of the dynamic and leakage energy can be found. We will call this supply voltage the energy-minimum operating voltage throughout the paper. We will show that the key to reduce the energy-minimum operating voltage will be to lower the leakage energy of the circuit.

One solution to reduce the leakage energy is to use asynchronous circuits, which can be designed to work at average case performance. Recently in [5] asynchronous circuits were studied from a low power and energy-efficient operation perspective. At least in theory, average case performance property would allow asynchronous sub-threshold circuits to work at a higher energy efficiency operating point. There are many approaches to design asynchronous circuits, some of which have inherent completion detection capabilities. In this paper we investigate a specific subset of asynchronous circuits that are obtained around coarse-grained combinational blocks. Traditionally such circuits require fixed delay lines to account for the worst-case critical path [6].

These fixed delay lines can be replaced by circuits that monitor the dynamic current consumption of individual blocks and generate appropriate completion detection signals that augment the asynchronous control circuits as presented in [7–9]. The circuits presented in these earlier papers are designed for normal operating regime with currents in the μA-to-mA range. In this paper, we propose a current sensing-based completion detection method that is suitable for sub-threshold operation and can detect current variations in the pA-to-nA range. The proposed methodology is demonstrated on the operation of a 16-bit adder where improvements in the average throughput of 19.3% and energy consumption reduction of 17% can be shown.

The remainder of this paper is organized as follows. Section 2 provides background information and motivation for this work and presents an analytical model for minimum energy operation of asynchronous circuits in general. In Section 3, our sub-threshold completion detection solution is explained, and in Section 4, the circuit-level implementation is presented. Simulation results are given in Section 5, and finally, conclusions are drawn in Section 6.
The total energy consumption of static CMOS digital circuits is given by the following well-known formula:

$$E_{\text{total}} = \alpha C_{\text{load}} V_{DD}^2 + I_{\text{leak}} V_{DD} t_{\text{leak}} + I_{\text{peak}} t_{\text{sc}} V_{DD}$$

(1)

where $E_{\text{dynamic}}$ is the total dynamic energy consumed while charging the load capacitance $C_{\text{load}}$ with a switching probability of $\alpha$. When the circuit is not switching there is some leakage energy $E_{\text{leakage}}$ that is consumed during the leakage time $t_{\text{leak}}$. In addition, when a switching event occurs, for the duration of the switching time $t_{\text{sc}}$, when both nMOS and pMOS transistors are conducting, some short circuit energy $E_{\text{short-circuit}}$ will be consumed. In our energy consumption analysis we will neglect the contribution of the short circuit energy in the sub-threshold regime, as it is known to contribute only a small portion of the overall energy consumption [2].

From Equation (1) it is immediately clear that the energy consumption of digital circuits can be reduced by lowering the supply voltage. It was first shown by Swanson as early as 1972 that CMOS digital operation can be realized with ultra-low supply voltages [10]. When the supply voltage is lowered aggressively, below the threshold voltage ($V_T$) of the MOS transistors, the digital circuit operates in the sub-threshold regime.

The current equations of MOS transistors operating in the sub-threshold regime are different from those working in the super-threshold regime. For an nMOS transistor, the drain current in the sub-threshold regime is given in [2] as

$$I_{DS} = I_S e^{(V_{GS}-V_T)/nU_t} (1 - e^{-V_{DS}/U_t})$$

(2)

where $n$ is a process-dependent term called slope factor and is typically in the range of 1.3–1.5 for modern CMOS processes. $V_{GS}$ and $V_{DS}$ are the gate-to-source and drain-to-source voltages, respectively. The parameter $I_S$ is the specific current that is given as,

$$I_S = 2n \mu C_{\text{ox}} U_t^2 \frac{W}{L}$$

(3)

where $\mu$ is the mobility of carriers, $C_{\text{ox}}$ is the gate oxide capacitance per unit area, $U_t$ is the thermal voltage whose value is 26 mV at 300 K and $W/L$ is the aspect ratio of the transistor.

Owing to the second term in Equation (2), the drain current is 0 when $V_{DS} = 0$ but reaches its maximum value for a given $V_{GS}$ and saturates with $V_{DS}$ values higher than a few $U_t$. As it is apparent from Equation (2), the drain current of an MOS transistor operating in the sub-threshold regime shows exponential dependence on the gate-to-source, drain-to-source voltages, slope factor, and the operating temperature. This exponential dependence of the drain current on the node voltages causes near-exponential changes in the operating speed of the circuit as the supply voltage varies [2]. As the supply voltage is lowered in the sub-threshold regime, the circuit delay as well as the leakage energy consumption increase exponentially and the switching energy decreases quadratically, resulting in an energy-minimum operating point to occur. This is in contrast to the super-threshold operation where an energy-minimum operating voltage cannot be found. By operating asynchronously, both leakage and dynamic energy components can be reduced. The reduction in the leakage energy is due to the reduction of the idle time of the circuit and the
reduction in the dynamic energy is due to the moving of the energy-minimum supply voltage to a lower value as will be explained in Section 2.2.

Another problem with the synchronous operation in the sub-threshold regime is the required excessive timing margin due to process variations. Because the sub-threshold current depends on the $V_T$ exponentially, the sub-threshold current and parameters that have a first-order relationship with the sub-threshold current such as leakage energy and circuit delay show a log-normal distribution under the assumption of normal distribution of $V_T$ mismatch. The log-normal distribution, when compared with the normal distribution, has a broader tail, meaning that synchronous circuits operating in the sub-threshold regime need to be operated with a larger safety margin when compared with super-threshold operation.

The delay variation for a single inverter from a standard cell library in a 0.18 $\mu$m process is shown in Figure 1. The data for the delay variation are gathered from 1000 point Monte Carlo simulations. As it can be seen from the figure, the delay variation is minimal at the nominal supply voltage of the process ($V_{DD}=1.8$ V) and has a normal distribution as expected. On the other hand, in the sub-threshold operating regime the delay has a log-normal distribution with a long tail on the right ($V_{DD}=0.3$ V). This kind of distribution curve implies that the below average delays deviate slightly from the expected value while the above average delays can be as high as several times the mean. Because of this excessive safety margin on the operating speed of the circuit, synchronous circuits operating in the sub-threshold regime consume more leakage energy, moving the energy-minimum operating voltage to higher values, resulting in higher energy consumption.

2.1. Asynchronous operation

Asynchronous circuit design techniques employing completion detection are very attractive for digital circuits operating in the sub-threshold regime because of their better than worst-case...
operation speeds, resulting in higher average throughput and lower leakage energy consumption. Asynchronous circuits rely on handshaking signals to communicate between functional units. Once an asynchronous block has been triggered (by the arrival of new data, for example), it will start processing. At the end of the operation, the asynchronous sub-block will signal that it has completed its operation. After this time operation will continue depending on the specific asynchronous protocol that has been used.

Efficient asynchronous operation requires a reliable method to determine the time required to complete processing of information. There are many methods to realize asynchronous circuits, some of which have inherent completion detection capability such as methods based on n-out-of-m coding. In this paper, we will concentrate on a subset of asynchronous circuits that are based on asynchronous micro-pipelines first introduced by Sutherland [11]. The asynchronous circuit model that we will use in the remainder of this paper is a bundled-data circuit shown in Figure 2 and is taken from [12].

In this type of asynchronous circuits, consecutive pipeline stages are separated using latches controlled by an asynchronous finite state machine (AFSM). The req line is used to signal that new data are available for processing. Once the pipeline stage is ready to process new data, the AFSM will acknowledge this request by using the ack line. This will enable the latch, and new data will become available for processing by the combinational circuit. The completion of this operation will generate a new req signal to the following stage. Implementations differ depending on the signaling scheme used between AFSMs. Without loss of generality we will use the four-phase signaling scheme in our examples.

Traditional implementations of this circuit frequently use a matched delay line that has been engineered to have a delay that corresponds to the worst-case delay through the combinational circuit as shown in Figure 2. There are obvious disadvantages of using a fixed delay element for performance reasons, especially for coarse-grained pipeline stages, where there is substantial variation in the operating speed depending on the input data switching probability. By operating such systems in a fixed delay fashion, unnecessary leakage energy consumption and throughput degradation will occur.

Our solution for this problem is to develop a completion detection circuit for sub-threshold operation. Details of this solution will be given in Section 3.

Figure 2. Four phase bundled data asynchronous pipeline (after [12]).
2.2. Sub-threshold minimum energy operation

In this section, an energy model for asynchronous systems working in the sub-threshold regime is presented. In the asynchronous systems, the operation of the system is dictated both by the switching and delay properties of the system under investigation and the external request and acknowledge signals. During the development of the model it will be assumed that as soon as the asynchronous block finishes processing the current data, new data can be applied.

The conceptual operation of an asynchronous block is shown in Figure 3(a). In this example, the circuit is observed for an arbitrary time frame $T$, where four distinct sets of input data are processed. The time spans where the circuit is purely leaking (waiting for handshake completion) are denoted by $T_L$, and the time spans where the circuit is both switching (processing input data) and leaking are denoted by $T_S$. In this diagram, without loss of generality, we assume that as soon as the RequestOut signal is lowered RequestIn goes high and the stage begins the switching phase; so all the purely leakage time spans ($T_L$s) are fixed, equal, and represent the asynchronous communication overhead.

In the development of the asynchronous system energy model, we assume that a total of $N$ operations take place during the arbitrarily long observation time frame $T$. Each switching time $T_S$ within the time frame can be different than each other depending on the switching properties of the circuit and the applied data to the circuit input.

Elaborating general energy consumption equation (1), the dynamic energy consumption during the $i$th time span can be expressed as

$$E_{\text{dynamic}_i} = e_i C_{\text{tot}} V_{DD}^2$$

(4)

where $e_i$ is a scaling parameter that defines the switching property of the circuit for a specific input data transition and $C_{\text{tot}}$ is the maximum possible switched capacitance of the circuit. The switching energy scaling parameter $e_i$ is in the range [0,1] and without loss of generality can be expressed as a single value in a random process $e$. By defining the $e$ as a random process, we can
define a mean $\mu_e$ for it and using this mean the average dynamic energy for $N$ calculations can be expressed as

$$E_{\text{dynamic}} = N\mu_e C_{\text{tot}} V_{DD}^2 \quad (5)$$

In Equations (4) and (5), the total capacitance $C_{\text{tot}}$ can be normalized in terms of the total inverter capacitance using a capacitance scaling factor $k_{\text{cap-logic}}$ as $C_{\text{tot}} = k_{\text{cap-logic}} C_{\text{inv}}$ where $C_{\text{inv}}$ is the switched capacitance of an inverter.

Assuming that even during the switching time, most of the cells in the circuit are leaking, the leakage energy consumption during the observation period $T$ can be defined as

$$E_{\text{leak}} = k_{\text{leak}} I_0 V_{DD} T \quad (6)$$

where $k_{\text{leak}}$ is the average leakage scaling factor of the circuit, $I_0$ is the leakage current of a single inverter. From Equation (6) total average leakage current of the circuit can be calculated as $k_{\text{leak}} I_0$. In this equation, the average leakage parameter $k_{\text{leak}}$ can be obtained from the synthesis results by summing the individual average leakage currents of the digital gates, where average leakage current is the mean of the leakage current for all the combinations of input vectors applied to the logic gate, and normalizing the result to the average leakage current of a single inverter.

Combining Equations (1), (5) and (6), the total energy consumption during the monitoring time frame $T$ can be defined as

$$E_T = N\mu_e k_{\text{cap-logic}} C_{\text{inv}} V_{DD}^2 + k_{\text{leak}} I_0 V_{DD} T \quad (7)$$

From Figure 3(a), the total time spent during switching is

$$T_S = \sum_{i=1}^{S} T_{s_i} \quad (8)$$

and based on the switching/timing statistics of the circuit we are analyzing, any switching activity ($T_{s_i}$) in Figure 3(a) can be defined as

$$T_{s_i} = d_i k_{\text{crit}} T_{\text{sw inv}} \quad (9)$$

where $d_i$ is a scaling parameter that defines the delay properties of the circuit processing the current data, $k_{\text{crit}}$ is a coefficient that defines the critical path delay of the circuit in terms of the inverter delay and $T_{\text{sw inv}}$ is the delay of an inverter. The scaling parameter $d_i$ can take any value in the range [0,1]. Similar to process $e$, if the process $d$ is modeled as a random process with the mean $\mu_d$, the total time spent during switching can be calculated approximately as

$$T_S = N\mu_d k_{\text{crit}} T_{\text{sw inv}} \quad (10)$$

During our observation frame $T$, $N$ switchings and $N$ handshakes take place, so $T$ can be expressed as

$$T = T_S + T_L = N\mu_d k_{\text{crit}} T_{\text{sw inv}} + N k_{\text{com oh}} k_{\text{crit}} T_{\text{sw inv}} \quad (11)$$

where $k_{\text{com oh}}$ is a parameter defining the overhead caused by the asynchronous communication in terms of the critical path delay of the purely combinational logic block. The delay of an inverter working in the sub-threshold regime is given in [2] as

$$T_{\text{sw inv}} = \frac{C_{\text{inv}} V_{DD}}{I_0 e^{V_{DD}/(nU_t)}} \quad (12)$$
By introducing Equation (12) into Equation (11), we get the total observation time as

\[ T = N k_{\text{crit}} C_{\text{inv}} V_{DD} \frac{1}{I_0 e^{V_{DD}/(nU_t)}} (\mu_d + k_{\text{comoh}}) \]  

(13)

and by introducing Equation (13) into Equation (7), we get the final total energy consumption equation for \( N \) switching events as

\[ E_T = N C_{\text{inv}} V_{DD}^2 \left[ \mu_e k_{\text{cap-logic}} + k_{\text{crit}} k_{\text{leak}} (\mu_d + k_{\text{comoh}}) e^{-V_{DD}/(nU_t)} \right] \]  

(14)

By setting \( N = 1 \) in Equation (14), the average energy consumption per operation can be found. The optimal operating voltage for minimum energy operation can be found by taking the derivative of Equation (14) with respect to \( V_{DD} \), equating the result to 0, and solving for \( V_{DD} \). The energy-minimum operating voltage is given in Equation (15) as

\[ V_{\text{opt-async}} = 2nU_t - nU_t W_{-1} \left[ -\frac{2e^2 k_{\text{cap-logic}} \mu_e}{k_{\text{crit}} k_{\text{leak}} (k_{\text{comoh}} + \mu_d)} \right] \]  

(15)

where \( W_{-1} \) is the \(-1\) branch of the LambertW function. LambertW function is examined thoroughly in [13]. All the \( k \)-parameters in Equations (14) and (15) can be found from the synthesis results of the digital circuit, and the \( \mu \)-parameters can be found after running switch level (synthesized verilog) simulations. Hence, the total simulation time for characterizing the sub-threshold performance of the circuit can be reduced greatly when compared with the SPICE-level simulation.

A similar modeling approach can also be taken for modeling a synchronous system operating as shown in Figure 3(b). By assuming that only one set of data is processed during a clock period \( (N = 1) \) and that the clock period is equal to the critical path of the logic circuit \( (T = k_{\text{crit}} T_{\text{sw_inv}}) \), the energy per operation can be derived from Equations (13) and (14) as

\[ E_T = C_{\text{inv}} V_{DD}^2 \left[ \mu_e k_{\text{cap-logic}} + k_{\text{crit}} k_{\text{leak}} e^{-V_{DD}/(nU_t)} \right] \]  

(16)

As in the asynchronous case, by taking the derivative of Equation (16), equating the result to 0 and solving for \( V_{DD} \), we get the optimum voltage that realizes the minimum energy operation as

\[ V_{\text{opt-sync}} = 2nU_t - nU_t W_{-1} \left[ -\frac{2e^2 k_{\text{cap-logic}} \mu_e}{k_{\text{crit}} k_{\text{leak}}} \right] \]  

(17)

To be able to compare the energy consumption of the synchronous and asynchronous circuits at their energy-minimum operating points, the \( V_{DD} \) parameters in Equations (14) and (16) are replaced by the optimum voltages \( V_{\text{opt-async}} \) and \( V_{\text{opt-sync}} \), respectively. The resulting energy equations depend only on the circuit implementation-related \( k \)-parameters and the switching/delay properties of the circuit.

Figure 4 shows the energy profile of our randomly generated test circuit at a switching/delay mean of 0.1 for both asynchronous and synchronous operation. The \( k \)-parameters of the test circuit were chosen such that the circuit has energy consumption equivalent to 1000 inverter gates with a drive capability of 1, and the critical path was chosen to be 25 inverter delays. In the simulations unless otherwise noted, the communication overhead parameter \( k_{\text{comoh}} \) is taken as 0.1. The optimum operating voltages of the same circuit for synchronous and asynchronous operations for the specified mean values occur at 210 and 170 mV, respectively.
The advantages of operating in an asynchronous manner in the sub-threshold regime are two-fold. First, the leakage energy is reduced by reducing the average time during which the circuit leaks. Lower leakage energy consumption reduces the energy-minimum supply voltage value. This reduction in the supply voltage effectively reduces the switching energy consumption. This can be seen in the plot of energy-minimum supply voltage values and their respective throughput values at those voltage values (Figure 5). In the figure, energy-minimum supply voltages and the
operating frequencies for changing switching/delay properties are shown. The energy-minimum supply voltage of the asynchronous operation is lower, thus reducing the switching energy. The throughput worsens due to lower operating voltage but it is negligible in asynchronous operation because of better-than-worst-case computation delay.

3. COMPLETION DETECTION SYSTEM FOR SUB-THRESHOLD OPERATION

Let us consider the four-phase bundled data asynchronous micro-pipeline shown in Figure 2. As mentioned earlier, the main problem with this configuration when operating in the sub-threshold regime is the matched delay line. Owing to process variations this delay line has to be severely over-constrained, reducing the operating speed, and thereby also directly reducing the energy efficiency of the circuit. In order to be able to harvest the maximum energy efficiency out of this circuit we must reduce the time the asynchronous block spends leaking, thus both saving leakage energy and moving the minimum energy operating voltage to a lower value.

Instead of using a fixed delay line, one solution is to detect the completion of the operation. One way to implement a completion detection circuit is to monitor the current consumption of the combinational block. As long as the combinational block is switching there will be dynamic power consumption in the circuit, which will be detectable through the supply current $I_{VDD}$ of the block. There are several implementations of completion detection circuits that use current sensing in the literature [7–9]. These methods rely on bipolar transistors, and/or resistors with high values, both of which are not always available in a standard process, or come as a process option with additional cost. The requirements on the bipolar transistors and resistors in these solutions set practical limits for the detection of current values in the $\mu$A-to-mA range.

Figure 6 shows the general block diagram of the current sensing-based completion detection system. The completion detection system consists of an AFSM, a completion detection circuit, which consists of pulse generators and an AC-coupled amplifier, and a single pMOS transistor.

![Figure 6. General block diagram of the completion detection system. The system consists of an AFSM, completion detection circuitry, and a sensor transistor.](image-url)
3.1. Sensing and sensed signal amplification

We propose a current sensing technique where the supply node ($V_{DD}$) of each combinational macro block in the asynchronous micro-pipeline will be driven by a diode-connected pMOS transistor. While the combinational circuit is idle (i.e. is only leaking), the supply voltage is at its nominal value. As soon as the computation phase starts, the combinational block will start drawing current from the pMOS transistor while the internal nodes begin to switch. The gate-to-source voltage ($V_{sense}$) of the pMOS transistor will change to accommodate the current change as shown in Figure 7. By detecting the change in this current, it is possible to detect the computation time of the combinational block.

Two operation regions can be discerned in the figure while a computation takes place. One region corresponds to the time when the actual switching of the internal nodes is taking place and the other to the settling of the supply node of the combinational logic block. All the internal nodes that will settle to a logic high value follow the settling of the supply node. The settling time of the supply node depends on the capacitance of the supply node of the logic block and the resistance of the diode-connected pMOS transistor. In order to reduce the serial resistance and hence the excessive settling delay as much as possible, a low-$V_T$ pMOS transistor is used to supply the combinational logic block. In [14] the computation time comparison of an 16-bit ripple carry adder with and without the sensor transistor was made and it was shown that the adder with the sensor transistor takes about 40% more time for computation, on average.

Another challenge involves the magnitude of the signals. The supply voltage in the sub-threshold regime will be lower than 400 mV. Consequently, the change in the sensed signal will be in the range of a few tens of mVs at the most. After sensing the current signal and converting to a log-compressed voltage signal, amplification of this signal is necessary before feeding it into the completion pulse generator. For the amplification of the sensed signal a class AB CMOS inverter–amplifier is used. Implemented AC-coupled amplifier used for amplification is shown in Figure 8. Diode-connected transistors $m_{p1}$ and $m_{n1}$ bias the transistors $m_{p2}$ and $m_{n2}$, which are acting as an amplifier, at the maximum gain point for a given size and DC level. By changing the transistor sizes, the frequency response of the amplifier can be changed and there is a trade-off between the gain required from the AC-coupled amplifier and the delay caused by the sensor transistor. The sizing optimization depends on the implementation characteristics of the logic block. If lower timing overhead is required for lower energy operation, the sensor transistor’s aspect ratio can be...
increased to reduce the voltage drop (sensed signal) on the sensor transistor. Because of the lower amplitude of the sensed signal more gain is required in the AC-coupled amplifier, hence a higher power consumption. On the other hand if greater delay caused by the sensor transistor (larger spikes in the supply node of the combinational logic block) can be tolerated, the gain, and thus the power consumption of the AC-coupled amplifier can be reduced.

3.2. Completion signal generation

The current consumption of a combinational block depends entirely on the input data switching probability. In the extreme case, where the input data do not change for two consecutive cycles, there will be no dynamic current consumption, and the system will not be able to detect a change in the current. For this reason the system must provide an automatic timeout feature.

We address this problem by using a circuit with inherent timeout feature, which consists of a trigger circuit and a variable length pulse generator as shown in Figure 9. We implemented the variable pulse generator as a monostable multivibrator as shown in [15]. The trigger circuit inside the AFSM is activated with the arrival of new data to the combinational block. This starts the pulse generator by setting nodes n1 and n2 to logic-0. At this point, the pMOS (M1), which acts
A CURRENT SENSING COMPLETION DETECTION METHOD

as a variable resistor, starts charging node n2 until this node reaches the inversion threshold of the inverter (I1). This causes the node n3 to switch finalizing the completion detection pulse generation. The time required to switch node n2 is dictated by the value of the charging current $I_{\text{charge}}$ and the value of the pulse capacitor $C_{\text{pulse}}$. The charging current $I_{\text{charge}}$ is inversely proportional to the change in $V_{\text{sense}}$, thereby generating a pulse that directly corresponds to the switching time of the combinational logic block. The correct computation completion signal generation is achieved by matching the time required to charge node n2 to the actual computation time. The generated pulse width of the variable pulse generator is given as

$$T = C(R + R_{\text{on}}) \ln \left( \frac{R}{R + R_{\text{on}}} \frac{V_{\text{DD}}}{V_{\text{DD}} - V_{\text{th}}} \right)$$

where $R$ is the average resistance of the pMOS transistor during pulse generation, $R_{\text{on}}$ is the resistance of the NOR gate and $V_{\text{th}}$ is the switching threshold of the inverter. Assuming $R_{\text{on}} \ll R$ and $V_{\text{th}} = V_{\text{DD}}/2$, Equation (18) can be simplified as $T = 0.69CR$. This means that the pulse generated will be compressed by a factor of 0.69 when compared with the actual computation time in the ideal case.

In the standard implementation of the variable pulse generator, node n3 is used as the output. For some cases, the resistance of the pMOS transistor might be too low. A very fast switching occurs at node n2 and no switching occurs at node n3, resulting in no signal generation. To prevent this situation, the signal at node n1 was used as the output. Figure 10 shows the node voltage waveforms of the pulse generator for two different control voltage waveforms. The signal at n1 goes low when the trigger signal goes high and if there is no change in the signal at n3, it goes high as the trigger signal goes low. This operation guarantees that a completion detection signal is

Figure 10. Variable pulse generator node voltages. The pulse width of the signal at node n1 is proportional to the control voltage, and hence, to the actual computation completion time of the combinational block.
generated for each trigger input, hence the timeout feature. The minimum width of the completion detection pulse is thus set by the trigger pulse width, setting the minimum delay of the Request signal of the preceding stage.

We have used MOS-based capacitors instead of the more common metal–insulator–metal to realize the pulse capacitor $C_{\text{pulse}}$. In this way, the capacitor value is made more dependent on the PVT variations, improving the immunity of the circuit against such PVT variations. One disadvantage of MOS-based capacitors is their nonlinearity. In the parallel compensated configuration presented in [16], all MOS transistors remain in the depletion mode for all the input and output voltage combinations. Within the operation range of a few hundred mVs this configuration gives a capacitance value that varies less than 4%. While this value is by no means spectacular, for the pulse generation circuit where the current is averaged over time, it is more than sufficient.

4. IMPLEMENTATION

To implement the completion detection circuit, several components need to be designed. The first stage is to design a suitable AC amplifier to increase the voltage swing of the sense voltage $V_{\text{sense}}$. In the second step, the RC constant of the pulse generator needs to be matched to that of the combinational circuit for varying switching/delay probabilities. To determine the delay of the combinational circuit, we first extracted the SPICE-level netlist of the critical path of each combinational circuit from the back-end design database using Synopsys PathMill static analysis tool. Later HSPICE is used to simulate the netlist using detailed models. From the simulation results, the appropriate resistance and sizing for the pMOS transistor are derived. We later merged the completion detection circuit block with the AFSM described in the following subsection.

4.1. Asynchronous finite state machine

The asynchronous communication protocol between consecutive pipeline stages is a four-phase bundled data protocol based on [17]. The AFSM that implements this protocol has been modified to include the completion detection circuit described in Section 3. A gate-level implementation of this AFSM is given in Figure 11. Extensive HSPICE simulations were used to verify the functionality of this AFSM over process corners.

One of the main problems of sub-threshold operation is implementing state-holding elements. Such circuits usually depend on a feedback loop to preserve the desired state. High leakage currents in the sub-threshold operating regime may result in state loss in some of these circuits.

Figure 11. AFSM including the pulse generating completion detection circuitry.
A CURRENT SENSING COMPLETION DETECTION METHOD

Table I. Comparison of Muller-C elements operating at $V_{DD}=0.4$ V.

<table>
<thead>
<tr>
<th></th>
<th>Dynamic</th>
<th>Martin</th>
<th>Sutherland</th>
<th>Van Berkel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average current (pA)</td>
<td>31.3</td>
<td>138.9</td>
<td>39.7</td>
<td>36.9</td>
</tr>
<tr>
<td>Total energy (fJ)</td>
<td>12.5</td>
<td>59.5</td>
<td>15.5</td>
<td>14.8</td>
</tr>
<tr>
<td>Delay (ns)</td>
<td>63.2</td>
<td>101</td>
<td>67.9</td>
<td>45.4</td>
</tr>
<tr>
<td>EDP (pJ.ns)</td>
<td>0.79</td>
<td>6.01</td>
<td>1.05</td>
<td>0.67</td>
</tr>
<tr>
<td>State retention</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

In asynchronous circuit design, the main state-holding primitive is the Muller-C element [18]. The correct operation of the Muller-C element is crucial for any asynchronous circuit. There are several published Muller-C implementations in the literature. We have compared four separate Muller-C implementations operating in the sub-threshold regime against each other: dynamic and static versions suggested in [11], a dynamic implementation with feedback suggested by Martin [19], and the one designed by Van Berkel for low-power operation [20].

All four circuits were compared in terms of their power/energy consumptions and their operation speeds. The simulation results for a supply voltage of 0.4 V are given in Table I. It can be seen that the dynamic Muller-C element is not able to retain its state at this supply voltage. Of the remaining alternatives the Van Berkel Muller-C element consumes the least amount of power and is also the fastest in implementation. The standard cell library of the target technology has been enhanced by implementing the Van Berkel Muller-C element.

The AFSM is a relatively small circuit and was easily implemented manually by placing and connecting standard cells. The only full custom additions were components of the pulse detector: $C_{\text{pulse}}$, resistor transistor M1, and the pMOS transistor supplying the combinational logic block with current.

5. RESULTS

Extensive post-layout simulations have been performed on the completion detection system. The waveforms in Figure 12 show the operation of the completion detection system for three consecutive cycles operating at $V_{DD}=0.22$ V. The supply voltage value of 0.22 V is the energy-minimum supply voltage for synchronous operation and for all the timing-related simulations this value is used. In the figure, the switching phase of the first computation continues for a long time (51.753 $\mu$s). During the second computation, the input data do not change, and consequently there is no switching activity within the combinational block. Nevertheless, due to the timeout feature, a fast completion detection signal is generated by the circuit (12.334 $\mu$s). The width of this fast signal is set by the pulse width of the latch/trigger signal as explained before. The last operation is much shorter than the first one and the sensed voltage signal $V_{\text{sense}}$ settles more quickly to its final value, resulting in a shorter pulse (31.709 $\mu$s) when compared with the first generated pulse.

Figure 13 shows the switching delay distribution extracted from the post-layout simulation of the 16-bit adder with completion detection for a large number of input vectors while operating with a supply voltage of 0.22 V. It can be seen that the mean value of this distribution is slightly larger than 40 $\mu$s. On the same graph the worst-case path of the same combinational circuit is
Figure 12. Operation of the completion detection circuitry at $V_{DD} = 220\, \text{mV}$. Three consecutive computations are shown. The time difference between the computations and the automatic timeout feature is emphasized.

Figure 13. Speed improvement in the operation of the 16-bit adder. Both the mean delay generated by the completion detection circuitry and the critical path delay are shown.

also shown. This figure clearly shows the potential benefit of the completion detection circuit for coarse-grained pipeline stages. Including the delay overhead of the completion detection circuit and the sensor transistor, it can be seen that the average gain in throughput is still 19.3%.

In Section 2.2 it was shown that the energy-minimum supply voltages for synchronous and asynchronous operations are different. We also investigated the energy reduction due to asynchronous operation at a lower supply voltage. Table II compares two implementations: Synchronous corresponds to the case where the adder is operating at the synchronous energy-optimum supply voltage value. The Asynchronous case shows the implementation with completion detection including the overhead for the completion detection circuit while working at the asynchronous energy-optimum supply voltage. The energy consumption numbers given are for equal number of computations while operating on the same input data. For the 16-bit adder circuit, the synchronous
energy-minimum supply voltage is 0.22 V, while for the asynchronous case the same value is 0.16 V. Owing to the asynchronous operation and the lowering of the energy-minimum supply voltage value, asynchronous operation reduces the energy consumption by 17% for the same computation load.

Corner simulations were also run and the completion detection circuit functioned without any loss of performance for all the corner cases except the slow–slow corner. In corners other than the slow–slow one, completion detection circuit successfully tracked the variation in processing time of the logic block, thanks to the MOS-based capacitors and the pMOS-resistance transistor. On the other hand for the slow–slow corner high correlation of the generated pulse width with the actual processing time worsens due to the slow AC-coupled amplifier response and slower charging of n2 in Figure 9.

6. CONCLUSIONS

In this work, the advantages of operating a coarse-grained CMOS circuit asynchronously in the sub-threshold regime and a novel completion detection system for sub-threshold operation are presented. The completion detection concept is based on a current sensing and pulse generation method suitable for sub-threshold asynchronous pipelines. The proposed system is capable of detecting supply current variations in the pA-to-nA range that are usually encountered in sub-threshold operation, it utilizes variable width pulse generation, and can be easily integrated into the standard CMOS design flow. The method is demonstrated as a proof of concept on a 16-bit CMOS adder using conventional EDA tools for 0.18 μm CMOS technology. The completion signal generated by the proposed system allows throughput improvements on the operation of the adder circuit up to 19.3% compared with the synchronous operation. If the throughput is not a concern, by working at the energy-optimum supply voltage for the asynchronous operation, energy consumption reduction of 17% can be realized. The completion detection system presented in this work is also applicable to digital systems operating with above-threshold supply voltages for improving the throughput, without any modifications.

REFERENCES


