A/D Converter based on Binary Search Algorithm

Candidate
Fedele FERRARA

Supervisors
Prof. Alexandre SCHMID
Prof. Fabrizio PIRRI
Nikola KATIC

Lausanne, August 2012
Table of Contents

List of Figures and Tables ... 5
List of Acronyms .. 7
Abstract ... 9
Thesis Contents Organization ... 10

Chapter 1 - Introduction ... 11

Chapter 2 - ADC Architecture & Design .. 13
 2.1 Binary Search Algorithm .. 13
 2.2 ADC based on SC Techniques with Op-Amp ... 15
 2.3 ADC based on SC Techniques with ZCD ... 16
 2.4 Custom Modifications of the Original Design .. 17
 2.5 Limitations and Advantages of the ZCD Implementation .. 18
 2.6 ADC Performances Evaluation .. 18
 2.6.1 Static Simulations .. 18
 2.6.2 Dynamic Simulations .. 19

Chapter 3 – Building Blocks Design .. 21
 3.1 Bootstrapped Switch ... 21
 3.1.1 Introduction .. 21
 3.1.2 Primary Configuration ... 22
 3.1.3 Alternative Configuration ... 24
 3.1.4 Limitations and Improvements ... 25
 3.1.5 Simulations and Results ... 29
 3.2 Zero-Crossing Detector .. 33
 3.2.1 Introduction .. 33
 3.2.2 Zero-Crossing Detection: Principle of Operation .. 33
 3.2.3 Transistor Level Implementation .. 37
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.4 Alternative ZCD Implementation</td>
<td>40</td>
</tr>
<tr>
<td>3.2.5 Simulations</td>
<td>42</td>
</tr>
<tr>
<td>3.3 Comparator</td>
<td>45</td>
</tr>
<tr>
<td>3.4 SAR Logic</td>
<td>46</td>
</tr>
<tr>
<td>3.5 Current Sources</td>
<td>48</td>
</tr>
<tr>
<td>3.6 Voltage Reference</td>
<td>49</td>
</tr>
<tr>
<td>Chapter 4 – Simulations & Results</td>
<td>51</td>
</tr>
<tr>
<td>4.1 Functional Simulations</td>
<td>51</td>
</tr>
<tr>
<td>4.2 Performance Simulations</td>
<td>53</td>
</tr>
<tr>
<td>Chapter 5 – Conclusions & Future Perspective</td>
<td>57</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>59</td>
</tr>
<tr>
<td>References</td>
<td>61</td>
</tr>
<tr>
<td>Appendix</td>
<td>63</td>
</tr>
<tr>
<td>Appendix A</td>
<td>63</td>
</tr>
<tr>
<td>Appendix B</td>
<td>65</td>
</tr>
</tbody>
</table>
List of Figures and Tables

Fig. 2.1 SAR ADC Block Diagram ... 13
Fig. 2.2 Block Diagram based on Binary Search Algorithm 14
Fig. 2.3 ADC architecture with Op-Amp ... 15
Fig. 2.4 Control Circuit for Φ_{2n} and Φ_{2p} .. 16
Fig. 2.5 ADC Architecture with ZCD Implementation 17
Fig. 2.6 Detail of the Implementation for the additional switches 17
Fig. 3.1 Bootstrap basic circuit .. 21
Fig. 3.2 Transistor level Implementation .. 22
Fig. 3.3 Input and Output voltage waveforms of the bootstrap switch 23
Fig. 3.4 Gate Voltage Variation vs. Time ... 24
Fig. 3.5 Transistor level Implementation .. 25
Fig. 3.6 Charge Injection Mechanism .. 26
Fig. 3.7 Clock Feedthrough Mechanism .. 27
Fig. 3.8 Dummy Switch CF Implementation ... 28
Fig. 3.9 Bootstrap Switch Schematic with Dummy Transistors 29
Fig. 3.10 Testbench configuration .. 30
Fig. 3.11 Input and Output Voltage for Testbench Simulation 31
Fig. 3.12 Spectrum of the first bootstrap switch configuration 32
Fig. 3.13 Spectrum of the second bootstrap switch configuration 32
Fig. 3.14 Timing Diagram .. 33
Fig. 3.15 Preset Phase (P) .. 34
Fig. 3.16 Coarse Charge Transfer Phase (E1) .. 35
Fig. 3.17 Fine Charge Transfer Phase (E2) ... 36
Fig. 3.18 Zero-Crossing Detector Implementation .. 37
A/D Converter based on Binary Search Algorithm

Fig. 3.19 Time Diagram of the ZCD ..38
Fig. 3.20 Control signal Implementation ..39
Fig. 3.21 Edge Detector Falling ..39
Fig. 3.22 Alternative Zero-Crossing Detector Implementation40
Fig. 3.23 Time diagram for the second ZCD Implementation41
Fig. 3.24 Edge Detector Rising ..42
Fig. 3.25 Stimuli for Offset Simulation of a Comparator43
Fig. 3.26 Cumulative Histogram and Normal Probability Plot for single ended ZCD44
Fig. 3.27 Cumulative Histogram and Normal Probability Plot for fully differential ZCD ..44
Fig. 3.28 Schematic of the Dynamic Latch45
Fig. 3.29 Schematic of the comparator46
Fig. 3.30 Schematic of the SAR Logic ...47
Fig. 3.31 Current sources ...48
Fig. 3.32 Voltage reference circuit ..49
Fig. 3.33 Time diagram for the reference circuit50
Fig. 4.1 Input and Output voltage of ZCBC51
Fig. 4.2 Input and Output voltage of ZCD52
Fig. 4.3 Input and Output of ZCBC with voltage reference circuit52
Fig. 4.4 Detail of Comparison ..53
Fig. 4.5 INL Plot ..54
Fig. 4.6 DNL Plot ..55
Fig. 4.7 Spectrum of Quantized Output55
Fig. 4.8 ADC Transfer Curve ..56

Table 3.1 Bootstrapped Switches Simulation Results30
Table 3.2 Simulations Results for ZCD implementations43
Table 4.2 ADC Performance Summary54
List of acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analog to Digital Converter</td>
</tr>
<tr>
<td>SC</td>
<td>Switched Capacitor</td>
</tr>
<tr>
<td>ZCBC</td>
<td>Zero-Crossing Based Circuit</td>
</tr>
<tr>
<td>Op-Amp</td>
<td>Operational Amplifier</td>
</tr>
<tr>
<td>SAR</td>
<td>Successive Approximation Register</td>
</tr>
<tr>
<td>S&H</td>
<td>Sample & Hold</td>
</tr>
<tr>
<td>BSA</td>
<td>Binary Search Algorithm</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital to Analog Converter</td>
</tr>
<tr>
<td>ZCD</td>
<td>Zero-Crossing Detector</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to Noise Ratio</td>
</tr>
<tr>
<td>SNDR</td>
<td>Signal to Noise and Distortion Ratio</td>
</tr>
<tr>
<td>ENOB</td>
<td>Effective Number of Bits</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>FOM</td>
<td>Figure of Merit</td>
</tr>
<tr>
<td>FF</td>
<td>Flip-Flop</td>
</tr>
<tr>
<td>DTDL</td>
<td>Dynamic Threshold Detecting Latch</td>
</tr>
<tr>
<td>INL</td>
<td>Integral Non Linearity</td>
</tr>
<tr>
<td>DNL</td>
<td>Differential Non Linearity</td>
</tr>
<tr>
<td>MSB</td>
<td>Most Significant Bit</td>
</tr>
<tr>
<td>LSB</td>
<td>Least Significant Bit</td>
</tr>
</tbody>
</table>
A/D Converter based on Binary Search Algorithm
Abstract

Nowadays, CMOS technology scaling introduces many new challenges in analog mixed-signal circuit design, as a large variety of potential applications requires a very power efficient system implementation. In most cases, Analog to Digital Converters (ADCs) are the most relevant power consumers in these systems, therefore, the minimization of their power consumption is a crucial design issue for the fulfillment of the specifications imposed by the market.

In order to meet the low power consumption requirements, a Switched Capacitor (SC) ADC, based on the Binary Search Algorithm, is presented in this report. A SC circuit consists of switches, capacitors and a gain stage, obtained by means of the capacitors ratio. A crucial element of traditional SC circuits is the Operation Amplifier (Op-Amp), but, in CMOS implementation, especially when moving to deep submicron technologies, Op-Amps pose difficult challenges for their design. Due to this, a zero-crossing based circuit (ZCBC) has been introduced in this project. The ZCBC relies on the novel concept of zero-crossing detection, which simplifies the design of SC circuits. Moreover, it results in better performance, especially in the power reduction, making it more suitable for scaled CMOS technologies.

In this master thesis project, a 10 bits Binary Search ADC has been implemented, using standard UMC 180 nm CMOS technology with a power supply of 1.8V. The ADC operates at a sampling frequency of 166 kHz and achieves nearly 8.7 effective bits. Fully differential configuration is implemented to achieve higher ADC performance. Bootstrapped switches are used to perform the sampling operation with the distortion level. The complete ADC draws no static current and consumes less than 58μW of power.

Thesis Contents Organization

Chapter 1 provides an overall introduction to the work presented in this report, explaining motivations and constraints of the design, together with some possible applications.

In *Chapter 2* the Binary Search Algorithm is explained in detail. Subsequently, two possible architectures, both based on SC implementation, are described. The first configuration is implemented with a traditional Op-Amp, while the second one replaces the Op-Amp by using the novel concept of Zero-Crossing Detection. Limitations and advantages of each configuration are described, together with the challenging issues of the design.

In *Chapter 3* the basic analog building blocks of the ADC architecture are presented. The described blocks are the bootstrapped switches, the ZCD block, the comparator, the current sources, the SAR logic and the voltage reference circuit. Furthermore, alternative implementations with respect to the initial ones are proposed for some of the circuits. Simulation details are also provided, with the particular emphasis on the ZCD offset estimation and on Signal to Noise Ratio (SNR) and Signal to Noise and Distortion Ratio (SNDR) measurements for the bootstrapped switches.

Chapter 4 is completely dedicated to simulations, including functionality and overall performance of the design architecture. In particular, Integral Non Linearity (INL) and Differential Non Linearity (DNL) are computed, as well as the SNR and SNDR of the ADC.

Finally, in *Chapter 5*, the conclusions of the project are presented, including future perspective and improvements.
Chapter 1

Introduction

In the recent years an increasing interest has been focused on the design of biomedical wireless sensors [1], since they can be used for online monitoring, detection and prevention of many diseases, reducing drastically hospital costs [2].

Most biomedical signals are characterized by low frequency range (tens of kHz) [3] and by low voltage amplitude. Moreover, they usually contain a high DC offset, due to the electrode, that needs to be suppressed. A typical biomedical sensor consists of a bandpass filter, a low-noise programmable amplifier and an Analog to Digital Converter (ADC), [2].

The most important constraint in the design of biomedical sensors is the power reduction, due to the fact that they are isolated from any external power supply source. As a consequence, the design of ADCs has been focused on low power demanding architecture.

The ADC architecture proposed in this master thesis is a Binary Search ADC, based on the Switched Capacitor (SC) implementation, which solves many of the limitations of classical Successive Approximation Register (SAR) implementation. Indeed, in CMOS technology SC circuits have often been chosen because their gain depends only on the ratio between the capacitances, rather than on the value of a single capacitor. This allows bypassing the problem related to the difficulty in obtaining accurate capacitance values in integrated CMOS processes.

An element of critical importance in the design of traditional SC circuits is the Operational Amplifier (Op-Amp). Due to the technology scaling, the Op-Amp design faces difficult design challenges [4]. In fact, lower voltage supply and lower output resistance, in scaled CMOS technologies, result in low dynamic range and lower intrinsic device gain, which lead to difficulties in the realization of accurate charge transfers [5].

A possible solution to keep the same dynamic range is to increase the circuit capacitances, but this solution will increase the total power consumption. Moreover, cascoded amplifier stages have been used to increase intrinsic gain but they further reduce the signal swing, which is already low in deep submicron CMOS technology since the voltage supply is scaled too.
Another approach to deal with technology and voltage scaling is an alternative architecture called Zero-Crossing Based Circuits (ZCBC) [4]. This implementation uses a combination of a comparator and current sources to perform the same charge transfer as Op-Amp based circuitry, reducing both design complexity and power consumption.
Chapter 2

ADC Architecture & Design

2.1 Binary Search Algorithm

The Binary Search Algorithm represents the basis of the Successive Approximation Conversion principle, which performs the analog-to-digital conversion by using the previously determined bits to set the decision condition for the next significant bit. Thanks to this method, it is possible to reduce the power consumption and to increase the conversion efficiency of the circuit.

In Fig. 2.1, the block diagram for an n-bit SA ADC is shown. The ADC is typically consisted of four subcircuits: a sample and hold circuit (S&H) to acquire the input voltage, a voltage comparator which compares the sampled input and the output of the internal DAC, a Successive Approximation Register (SAR) designed to convert the analog output of the comparator to the digital code and, finally, the internal DAC, placed in the feedback loop, used to supply the reference comparison level to the comparator. The analog reference comparison value corresponds to the digital code of the SAR logic.

![Fig. 2.1 SAR ADC Block Diagram](image)

Among all the available ADC architectures, the SAR ADC circuit has been often considered as the most efficient configuration to digitalize biomedical signals.
Nevertheless, the SAR ADC architectures, especially those based on capacitive DAC, present some disadvantages which hinder their design [2]:

- **Large area occupation**, for the capacitive DAC, especially in the case of Binary Weighted Arrays (BWA), which requires a large die area for implementation.

- **Large switching power consumption**, in fact, although the overall power consumption is kept low, large peaks of currents from the supply voltage can be observed. These peaks can seriously jeopardize the performance of the converter.

- **Parasitic capacitances**, which can reduce the accuracy of the capacitive DAC and also affect the design performance.

As a result of all these mentioned drawbacks, an alternative architecture, based on Binary Search Algorithm, is presented, [2]. This configuration eliminates the need for DAC circuit, as shown in the block diagram (Fig. 2.2) and it is implemented using Switched-Capacitor (SC) Circuits.

The principle of operation of this architecture is quite straightforward. Indeed, it begins when the sampled input is compared with a certain threshold voltage V_{th} to set the Most Significant Bit (MSB). Subsequently, depending on the result of the first comparison, a reference voltage $V_{ref}/2$ will be added or subtracted and a new comparison will be performed to set the second bit. After that, $V_{ref}/2$, divided by two, will be added or subtracted again. In order to complete the conversion, the cycle needs to be repeated as many times as the number of bits of the A/D converter.

In the following sections, two ADC architectures based on the binary search algorithm are presented. Both configurations are implemented by using a Switched-Capacitor
A/D Converter based on Binary Search Algorithm

technique. However, while in the first architecture a traditional operational amplifier is used, in the second one the Op-Amp is replaced by a comparator, based on the Zero Crossing Detection principle, which will be explained in detail later on in this report, in section 3.2.

The fully-differential mode was chosen due to its numerous advantages with respect to the single ended one. In fact, in addition to simplifying the sum and subtraction operations with the reference voltage, it allows to increase the input swing and it reduces charge injections errors, since only the difference between the two inputs signals is considered.

2.2 ADC based on SC Techniques with Op-Amp

The first ADC architecture is shown in Fig. 2.3. As already mentioned, this design is based on Switched-Capacitor principle and it is implemented using only one operational amplifier [2].

In the figure, the outer branches of the schematic on the left side represent the Sample and Hold circuit whose operation is performed in the first steps of the ADC conversion. In the sampling stage, the input signal is sampled, stored on the capacitor C_{in} and then transferred on the integrator.

Whereas, the central branches constitute the reference circuit, which operates in 3 phases (ϕ_S, ϕ_2 and ϕ_1). During ϕ_S, the capacitors C_1 are charged to the voltage

![Fig. 2.3 ADC Architecture with Op-Amp](image-url)
references V_{refn} and V_{refp}. Then, in the phase Φ_2 half of the charge is transferred to C_2 and it is either added to or subtracted from the integrated value, depending on the value of the signal V_{comp} which controls directly Φ_{2n} and Φ_{2p} with a simple logic circuit (Fig. 2.4). Finally, in the last phase (Φ_1), the capacitors C_2 are discharged by connecting both plates to the common mode voltage V_{cm}. In [2], the fully differential amplifier is in a folded-cascode architecture with a **SC common mode feedback**, which has the purpose to stabilize the common voltage.

Finally, the last two analog blocks for the described architecture are the comparator, which will be described in detail in the next chapter of this report (section 3.5), and the SAR Logic (not included in the Fig 2.3), which will generate the final digital output.

2.3 Design of ADC based on SC techniques with ZCD

The basic idea of this configuration is to replace the operational amplifier with a **Zero-Crossing Detector** (ZCD). The Zero-Crossing Detector based approach allows to build almost any switched-capacitor analog circuit without an operational amplifier [6].

This architecture replaces the function of the Op-Amp with the combination of a comparator controlled current sources to realize the equivalent charge transfer process as in operational amplifier based implementation [4].

The principle of operation is quite similar, with the only difference that the operational amplifier forces the virtual ground condition in a continuous time manner, while, in the case of ZCD, the comparator detects the virtual ground condition and then turns off the current sources. As a result, the power consumption will be much lower in comparison to the equivalent Op-Amp based circuit.

The ZCD working principle, together with the corresponding transistor level implementation, will be discussed more in detail in the following chapter.

A complete ADC circuit with ZCD block is shown in Fig. 2.5. Note that the comparator and the current sources are not the only modifications with respect to the previous
configuration. In fact, the reference voltage is modified and additional switches are added between the load capacitances, as explained in the section 2.4.

2.4 Custom Modifications of the Original Design

As mentioned previously, the ZCD is not the only change introduced in the design: the main additional modification consists of the voltage reference circuit. In this second version, operates in 3 phases instead of two. Indeed, since the comparator is no more forcing the virtual ground condition in a continuous way as in the Op-Amp based circuit, an extra-phase is needed to ensure that the half of the charge from C_1 is effectively transferred to C_2. Furthermore, three additional switches are needed between the two load capacitances [4], as shown in detail in Fig. 2.6. Note that the switches M2+ and M2- are open after the reset phase, while M1 is kept closed to connect the load capacitors until the ZCD detects the virtual ground condition. Hence, M1 ties together the
inside plates of the capacitors, but allows the voltage on that node to float while outputs are ramping. As a result, both capacitors will charge at the same rate regardless of any current mismatch in current sources and thus no common mode charge error will be accumulated.

The last difference is that in this last configuration there is no common mode feedback circuit [4]. This is why the output voltage common mode is set by the current sources which charge the capacitors and does not depend on the performance of the ZCD. Any mismatch between current sources is absorbed by the load capacitors and produces a small voltage common mode error, but, since this error gets reset every cycle in ZCD, the SC common mode feedback circuit is not needed in this architecture.

2.5 Limitations and Advantages of ZCD Implementation

A possible limitation for ZCDs is coming from the offset compensation, which, due to technology scaling, is becoming increasingly important for analog circuit design. In fact, the traditional closed-loop offset cancelation techniques are not applicable to Zero Crossing Based Circuits (ZCBC). The offset that affects a ZCBC is a dynamic one and cannot be corrected via closed-loop techniques, used for static offset compensation. However, in order to overcome this limitation, derivative techniques have been developed [4].

On the other hand, the main advantage of the ZCD implementation is the power efficiency in comparison to the traditional operational amplifier, because the comparator is turning off as soon as the virtual ground condition is detected. In addition to this, ZCBCs are more amenable for scaled CMOS technology, because the design of a ZCD does not require any high-gain or high-speed feedback loop to stabilize the circuit, that on the contrary pose difficult challenges for the design of Op-Amps in deep sub-micron technologies [4]. As a result, the implementation with zero-crossing reduces the complexity of the design.

Considering all the above, in the next chapter of the report, all the analog building blocks for the second ADC architecture will be discussed in detail, including transistor level implementation and behavioral simulations.

2.6 ADC Performances Evaluation

2.6.1 Static Simulations

The static performances of ADCs are evaluated by the nonlinearity, which can be characterized in different ways: differential or integral [16]. The Differential
Nonlinearity (DNL) describes the maximum difference between the theoretical and the real transfer function of an ADC, measured between adjacent Least Significant Bit (LSB) values over the full conversion range.

For a particular digital output signal i of the ADC, the DNL values are:

$$DNL_i = Width_{LSB} - Width_i$$ \hspace{1cm} (2.1)

The Integral Nonlinearity (INL) indicates the maximum deviation of transfer function from its ideal transfer function, with gain and offset errors set to be zero.

The relationship between the DNL and the INL is described by the following equation (2.2):

$$\begin{align*}
INL_i &= \sum_{k=0}^{i} DNL_k \\
DNL_i &= INL_{i+1} - INL_i
\end{align*}$$ \hspace{1cm} (2.2)

2.6.2 Dynamic Simulations

The Signal to Noise Ratio (SNR) is one of the most important parameters to evaluate the dynamic performances of ADCs, since it describes the resolution of the converter in dynamic range. It compares the peak-to-peak full scale input signal to the level of background noise, which, neglecting external noise sources, is given by the quantization error ε.

According to [16], if the input signal is a sine wave, the theoretical value of SNR in dBs can be expressed as:

$$SNR_{theoretical} = 20 \log \left(2^N \sqrt{1.5} \right) = 6.02N + 1.76 \text{ [dB]}$$ \hspace{1cm} (2.3)

Where N denotes the number of bits of the ADC. Moreover, considering that, usually the SNR value is computed with the spectrum analyzer, the Effective number of Bits (ENOB) can be deduced from the previous formula (2.3):

$$ENOB = \frac{SNR_{real} - 1.76}{6.02} \text{ [dB]}$$ \hspace{1cm} (2.4)

The parameter ENOB represents a comprehensive evaluation of ADCs, because it covers all possible errors of A/D conversion, including missing code, clock jitter and other types of noise.
Even if, in the literature, usually, the definition of ENOB is not based on SNR, but rather on **Signal to Noise and Distortion Ratio** (SNDR), as follows:

\[ENOB = \frac{SNDR_{real} - 1,76}{6,02} \, [dB] \] \hspace{1cm} (2.5)

The SNDR is defined as the ratio of the root-mean-square (RMS) value of the input signal to root mean value of root-sum-square (RSS) of all other spectral components, except from DC ones, [17]. Basically, the difference with the SNR is that the SNDR includes spectral components of all harmonics, while in SNR the first 5 harmonics are not taken into account. Thus, the measured values of SNR are higher than measured values of SNDR.
Chapter 3

Building blocks design

3.1 Bootstrapped Switch

3.1.1 Introduction

In switched capacitor (SC) circuits, the switches have to provide fast and accurate charging of sampling capacitor, avoiding a degradation of the signal. The main reason for degradation is the dependence of the switch resistance R_{ON} on the input voltage.

For this reason, the usage of a simple MOSFET as a switch, results in signal distortion. In fact, the On-Resistance of a simple MOS switch with source and drain connected as switch terminals and the control signal on its gate, depends on the gate-source voltage drop according to the following formula (3.1):

$$R_{ON} = \frac{1}{\beta(V_{GS} - V_{Th})}$$

(3.1)

Where V_{GS} and V_{Th} are respectively the gate-source voltage and the threshold voltage, while β can be expressed as a function of the MOS dimensions (W and L) and of the oxide thickness T_{OX}, as follows:

$$\beta = \frac{\mu \epsilon W}{T_{OX} L}$$

(3.2)

Additional problems for a single MOS input switch could come from the scaling down of the CMOS technology. Indeed, reducing the power supply, switch resistance dramatically increases and a reliable linear conduction is more difficult to obtain. In addition to this, threshold voltage does not scale at the same ratio as for the supply voltage, so, in these conditions, the MOS switch is not conducting in a large portion of the input voltage range.

The bootstrapping technique[7] allows the input signal to swing from rail to rail and it is fully compatible with low voltage operation, requiring minimal extra hardware. Bootstrapped switch guarantees maximum conductance, independently of the input, providing a constant gate-source voltage of the switching transistor during the ON state.
The schematic (in Fig. 3.1) shows the switching transistor MNSW, together with five additional switches and an additional capacitor C_b. During Φ phase, the capacitor is charged to $V_{dd} - V_{ss}$ through switches S3 and S4, while S5 ties the gate voltage of MNSW to V_{ss} to ensure that the transistor is switched off. During phase Φ, switches S1 and S2 are closed, putting the charged capacitor in series with the input voltage. Hence, the gate-source voltage of MNSW is kept constant and equal to the across the capacitor (approximately $V_{dd} - V_{ss}$).

3.1.2 Primary Configuration

Transistor level schematic of the bootstrapped switch is shown in Fig. 3.2. The switching operation is controlled with a single phase clock Φ. In the figure, the ideal switches (from S1 to S5) are replaced respectively with transistors MN1, MP2, MN3, MP4 and MN5, [8]. Furthermore, additional transistors are added in order to extend the functionality and to limit the gate-source voltage, so that the relative terminal voltage can maximally reach V_{dd} for all the devices.
For instance, the transistors MN7 and MP6 ensure that the gate-source voltage of MP2 does not exceed $-V_{dd}$ during phase Φ and V_{dd} during $\overline{\Phi}$. The problem with this configuration is that, in order to make MN7 conducting, MP2 should be already conducting, thus a further transistor (MN8) is needed as a startup to force MP2 conducting. Moreover, the transistor MN9 was added in series to MN5 to limit its gate-drain voltage and avoid reaching $2V_{dd}$ during Φ. In addition to that, it should be observed that the bulk of PMOSs must be connected to the highest potential and so for example to node B and not to V_{dd}.

Finally, note that the value for the capacitor C_b must be sufficiently large to supply enough charge to the gate of the main switch MNSW, while it is in the ON state. Otherwise the boosted voltage will be reduced by parasitic capacitances, according to the formula:

$$V_c = V_{in} + \frac{C_b}{C_b + C_p} V_{dd}$$

(3.3)

Where C_p is the total parasitic capacitance connected to the top plate of C_b during the ON state. Therefore, in order to avoid a significant reduction of the boosted voltage, a value of 500fF was chosen, to be able to consider the effect of C_p negligible.

The output of this bootstrap switch, in a simple sample and hold configuration, is shown in the following figure (Fig. 3.3), where the sampling frequency is set to 1MHz and the input is a sine wave with a peak-to-peak amplitude of $1.8V$.

![Image of input and output voltage waveforms](image-url)

Fig. 3.3 Input and Output voltage waveforms of the bootstrap switch
Moreover, Fig. 3.4 shows the voltage variation on the gate of MNSW V_g. Indeed, when the switch is ON, V_g is greater than the input voltage V_i by a fixed difference of V_{dd}. This confirms the proper operation, since the gate-source voltage of MNSW is constant and independent of the input signal.

![Fig. 3.4 Gate Voltage Variation vs. Time](image)

3.1.3 Alternative Configuration

In addition to the already mentioned configuration, another possible design for the bootstrap switch is presented [9]. This version (Fig. 3.5) is quite similar to the previous one, with the only difference that the PMOS transistor MP4 is replaced by an NMOS (MN4). Transistor MN4 is controlled by a clock multiplier, formed by transistors MN10 and MN11 together with two capacitors (C1 and C2).

The aim of this circuit is to increase the overdrive voltage ($V_{gs} - V_{th}$) on transistor MN4 in order to ensure the linear region operation and, consequently, a low on-resistance.

The clock multiplier is basically a high voltage generator circuit [10]. In fact, by applying a square wave input signal of V_{dd}, both C1 and C2 are charged to V_{dd} through the cross coupled NMOS transistors. As a result, an inverted square wave of almost $2V_{dd}$ is generated at the output of the clock multiplier.

Note that the output voltage value is not exactly doubled because we need to take into account the parasitic capacitances present in the circuit.
3.1.4 Limitations and Improvements

The major limitation of the bootstrapped switch performance comes from the disturbance of the sampled input sampled voltage when the MOS switch is turned off. The main causes for this loss in accuracy are charge injection, clock feedthrough and thermal noise.

The thermal noise is an electronic noise due to the thermal agitation of the charge carriers, regardless of any applied voltage and, when is referred to a capacitor, is also known as KTC noise. In order to determine the minimum value for the load capacitance, the following relation can be used (3.4):

\[
\sqrt{\frac{kT}{C}} < \frac{V_{RMS}}{SNR_{linear}}
\]

Then, considering that \(V_{RMS}\) is equal to the maximum input swing divided by \(2\sqrt{2}\), so \(1.8 \times \frac{V}{2\sqrt{2}} = 0.636 \times V\) and that \(SNR = 62 dB\) (or 1258 in linear value) for a 10 bits ADC, the following relation (3.5) is obtained:

\[
C > \frac{\sqrt{RT} \cdot 1258}{0.636V}
\]
Thus, according to (3.5), it is possible to determine that the minimum value for the load capacitance is $16\,\text{fF}$. Assuming that the chosen value for C_{load} will be much higher, due to capacitor matching, it can be observed that the effect of thermal noise is negligible in this circuit.

Among all the previous mentioned issues, **charge injection** is the most important. It could be explained using the following figure (Fig. 3.6), [11].

![Fig. 3.6 Charge Injection Mechanism](image)

When the MOS transistor is on and V_{DS} is small, the charge under the gate oxide resulting from the inverted channel is Q_{ch}:

$$Q_{ch} = WLC_{ox}(V_{dd} - V_{in} - V_{th})$$ (3.6)

Then, when the MOS turns off, this charge will be injected both into the load capacitance and into voltage supply. Since the input can be considered as a low impedance node, this injection has no effect on it. Instead, the injected charge will change the voltage across the load capacitance C_{load}.

If the control signal turns off fast, the channel charge distributes approximately equally between the input and the load capacitance. Thus the change in voltage (ΔV) across C_{load} is:

$$\Delta V = \frac{WLC_{ox}(V_{dd} - V_{in} - V_{th})}{C_{\text{load}}}$$ (3.7)

which means that the total voltage across C_{load} is:

$$V_{out} = V_{in} - \frac{WLC_{ox}(V_{dd} - V_{in} - V_{th})}{C_{\text{load}}}$$ (3.8)
From (3.8), it can be noticed that the voltage across C_{load} is nonlinear with respect to the V_{in} due to threshold voltage. Therefore, charge injection results in nonlinearity errors.

The second problem refers to clock feedthrough [11] (shown in Fig. 3.7), which can be defined as the coupling between the control signal on the transistor gate of the switch and the analog signal passing through the transistor. In fact, when the signal Φ is high, it feeds through the gate-drain and gate-source overlap capacitances (in red in Fig. 3.7), but since the transistor is turning on, C_{load} is charged to V_{in} and the clock feedthrough has no real effect on the final value of the output. Instead, when Φ goes low and the MOS transistor turns off, a capacitive divider is created between the gate-source (or gate drain) capacitance and C_{load}.

As a result, an offset voltage will be generated across the load, according to the following formula:

$$\Delta V_{offset} = \frac{C_{overlap}}{C_{overlap} + C_{load}} V_{dd}$$

(3.9)

Where $C_{overlap}$ is the overlap capacitance that can be expressed as $C_{overlap} = C'_{ox} W L_{ov}$, with L_{ov} representing the length of the source/drain overlap.

The simplest method to reduce the effects of clock feedthrough and charge injection on the bootstrap switches is to increase the value of the load capacitance. However, this is
not an efficient solution since it would require a large IC area and it would significantly increase the power consumption.

Many clock-feedthrough cancelation methods have been presented in literature. One of the most widely used is **dummy switch**, as shown in Fig. 3.8.

![Fig. 3.8 Dummy Switch CF Cancelation](image)

A dummy switch, M2 in this case, is a normal MOS transistor, with its source and its drain short-circuited, placed in series with the desired switch M1. The clock signal Φ controlling its gate is an inverted version of the original clock Φ. When M1 turns off a part of the channel charge is injected toward the dummy transistor, in which regardless of the shorting, a channel is still created by applying a voltage on its gate. The charge injected by M1 is compensated by the charge induced by M2 and the global charge injection cancels out.

If the control clock signal frequency is high enough, there will be approximately equal splitting of the charge between the source and the drain of the MOS transistor. Therefore M2 should match with half of the charge injected by M1. As a result, the width of the dummy transistors is half of that of the MOS transistor, while keeping the same length L.

In the case of the two previously presented configurations for the bootstrap switches, two dummy transistors were placed: the former at the output node (D1) and the latter at the gate of MP2 (D2) [12], as shown in Fig. 3.9.
Fig. 3.9 Bootstrap Switch Schematic with Dummy Transistors.

Note that the two dummy transistors (in red) were placed exactly at the same position also for the second switch configuration.

Finally, another method for canceling charge injection and clock feedthrough is to use a fully-differential circuit topology. Since in this case we are considering the difference between the positive and the negative output, the voltage offsets induced on both sides will cancel out, resulting in the better switching performance.

3.1.5 Simulations and Results

As already explained in a previous chapter of this report, SNR and SNDR are the most important parameters to evaluate the dynamic performances of an A/D converter. In this work, they were used also to estimate the performance of the two bootstrapped switches. The results were obtained using spectral simulations and the spectrum of sampled outputs were computed using MATLAB® and Fast Fourier Transform (FFT).

In order to guarantee that the signal power (for a single input frequency) is contained within a FFT bin, a coherent sampling was used, according to the following equation (3.10):
\[
\frac{f_{in}}{f_s} = \frac{N_s}{M}
\]

(3.10)

Where \(f_{in}\) and \(f_s\) represent the input and sampling frequency, while \(N_s\) and \(M\) are respectively the number of cycles and the number of samples for the FFT and they are relatively prime numbers. Moreover, with the aim of avoid undersampling, the ratio \(\frac{N_s}{M}\) should be smaller than 0.5.

In the following simulations, in order to fulfil these criteria, \(M\) and \(N_s\) were set respectively to \(2^{10} = 1024\) and 101. Considering that the sampling frequency \(f_s\) was equal to 1MHz, the frequency of the input sine is set to \(98632.8125\)Hz, according to the formula.

![Testbench configuration](image)

Fig. 3.10 Testbench configuration

Fig. 3.10 shows the schematic for testbench. Note that a fully differential configuration was chosen in order to minimize the impact of charge injection and clock feedthrough on both SNR and SNDR measurements. Furthermore, two capacitors per side were used, instead of simple track-and-hold circuit, so as to test the switches in a configuration more similar to that of the final ADC circuit. The capacitor values are set to 500fF.

The input and output voltage waveforms are shown in Fig. 3.11.
A/D Converter based on Binary Search Algorithm

Fig. 3.11 Input and Output Voltage for Testbench Simulation

SNR and SDNR values were computed for both bootstrapped switches and presented in the following table (Table 3.1), together with sampled outputs spectra for both cases (in Fig. 3.12 and 3.13):

<table>
<thead>
<tr>
<th>Switch Configuration</th>
<th>SNR (dB)</th>
<th>SNDR(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>87,5</td>
<td>77,0</td>
</tr>
<tr>
<td>Second</td>
<td>87,4</td>
<td>82,1</td>
</tr>
</tbody>
</table>

Table 3.1 Bootstrapped Switches Simulation Results

Note that the second configuration indicates the one with the clock multiplier circuit.
From the data analysis, especially considering SNDR values, which take into account distortion, it clearly appears that the both switches have largely satisfying performances for usage in a 10 bits A/D converter. It may be noticed that the performance of second bootstrap switch is slightly higher than for the first one.

Considering that the performance of the first switch is already satisfying and that in the second implementation we would need four MOS transistors and two capacitors more, the first configuration is chosen to be implemented in the final ADC circuit.
3.2 Zero-Crossing Detector

3.2.1 Introduction

As already mentioned in the previous chapter of the report, the ZCBCs have been introduced as alternative configurations to traditional operational amplifier based switched capacitor circuits. The ZCBCs are replacing the functionality of the Op-Amp, using only a comparator (ZCD) and comparator controlled current sources. The main difference between Op-Amp and ZCD is that the latter is only detecting the virtual ground condition instead of forcing it continuously in time, so as to reduce considerably power consumption, since the comparator can be switched off after the condition is detected. In the following section the ZCD implementation is presented in detail, including transistor level design and simulations.

3.2.2 Zero-Crossing Detection: Principle of Operation

Two different phases can be distinguished for the ZCBC: the sampling phase Φ, in which the capacitors are simply charged to the sampled input voltage value and the charge transfer phase, in which is possible to observe the different behavior of a ZCD with respect to the traditional Op-Amp based circuit.

During the charge transfer phase, the precision of the final output voltage is directly proportional to the accuracy of virtual ground condition. Therefore, in order to achieve high accuracy, the transfer phase was divided into three sub-phases [6]: the preset phase (P), the coarse charge transfer phase (E1) and the fine charge transfer phase (E2). The correspondent timing diagram in shown in Fig. 3.14.

![Fig. 3.14 Time Diagram](image-url)
In order to achieve higher accuracy, it would be possible to divide the charge transfer in more than three sub-phases, but in this way further limitations for the sampling frequency and power consumption would be introduced. Moreover, since three sub-phases are already enough to obtain precise charge transfer, this possibility was rejected so as to have a more balanced trade-off between accuracy and speed of the circuit.

The behavior of the ZCD, during the preset phase is shown in Fig. 3.15. This brief phase is used to ensure that the voltages V_y and V_x start from the condition:

$$V_x > V_y$$ \hspace{1cm} (3.11)

\[\Phi\]

\[\neg \Phi\]

\[P\]

\[\neg P\]

\[E_1\]

\[\neg E_1\]

\[E_2\]

\[\neg E_2\]

\[\text{Preset Phase (P)}\]

Fig. 3.15 Preset Phase (P)

In fact, after the sampling phase, both V_x and V_y are equal to V_{cm} subsequently, during the preset phase (P), the output nodes V_{o+} and V_{o-} are connected respectively to lowest and highest system voltages. Thus, the preset values for the summing nodes V_y and V_x are:

$$V_y = \frac{C_1 + C_2}{C_1 + C_2} V_{CM} - \frac{C_1}{C_1 + C_2} V_{IN+}$$ \hspace{1cm} (3.12)

$$V_x = \frac{C_1 + C_2}{C_1 + C_2} V_{CM} - \frac{C_1}{C_1 + C_2} V_{IN-} + \frac{C_1}{C_1 + C_2} V_{dd}$$ \hspace{1cm} (3.13)
Considering that $C_1 = C_2$, the two equations can be simplified as follows:

\[V_y = V_{CM} - \frac{1}{2} V_{IN+} \] \hspace{1cm} (3.14)

\[V_x = V_{CM} - \frac{1}{2} V_{IN-} + \frac{1}{2} V_{DD} \] \hspace{1cm} (3.15)

Thus, using the condition (3.11), it can be stated that the voltage range required for differential input, in order to keep the output between supply power rails, is from 0 to V_{DD}.

The second phase of the charge transfer corresponds to the coarse transfer phase (E1), shown in Fig. 3.15, in which a fast and rough estimation of the virtual ground condition takes place. This phase begins when the two current sources turn on to charge up the capacitive network. As a consequence, the ramp voltages are generated for the summing nodes (V_x and V_y) and the output ones (V_{o+} and V_{o-}).

As shown in Fig. 3.16, the voltages continue to ramp up (or down) until the virtual ground condition is detected ($V_x = V_y$). Then, the current sources are switched off by the comparator through the control signal E1. The delay between reaching the virtual ground condition and turning off of the current sources, results in a finite overshoot as indicated in Fig. 3.16.

![Fig. 3.16 Coarse Charge Transfer Phase (E1)](image-url)
In order to obtain a more accurate value for the output voltage, the fine transfer phase (E2) (shown in Fig. 3.17) is used to correct the overshoot coming from the coarse transfer phase. In this case, the current sources are activated as soon as the phase E1 finishes and they discharge all the capacitive network, creating ramp waveforms with the opposite slope with respect to E1. The voltages keep ramping until the virtual ground condition is met again, turning off both the current sources.

Note that the current sources used for E2 conduct less current in comparison with the ones used in the previous phase, so the delay of the comparator in this case will cause an error called undershoot, much smaller than the overshoot at the end of the coarse transfer phase.

![Diagram](image)

Fig. 3.17 Fine Charge Transfer Phase (E2)

Observe that the time spent in E1 or E2 is not fixed, but is signal dependent. To obtain a correct charge transfer phase, it has to be guaranteed that for any voltage value of the differential input there will be enough time to complete properly the whole charge transfer phase. Furthermore, it can be noticed that for systems with high accuracy and moderate speed as in this case, the above described charge transfer provides the best compromise, in terms of Figure of Merit (FOM), especially if the time spent on fine charge transfer phase (E2) is long in comparison with the time spent during the coarse transfer phase (E1).
3.2.3 Transistor Level Implementation

The design of the comparator, shown in Fig. 3.18, is based on the implementation proposed by Lane Brooks and Hae-Seung Lee [4], with additional modifications, since the above mentioned phase E2 was not taken into account in their work.

The first stage of ZCD is the differential to single-ended preamplifier, implemented with a differential PMOS pair (M1 and M2) and a current mirror (M3 and M4), used to convert the signal from a differential input to a single-ended output.

![Differential to single-ended pre-amplifier](Image)

Fig. 3.18 Zero Crossing Detector Implementation

The second stage is composed by two Dynamic Threshold Detecting Latches (DTDL), which basically are dynamic logic circuits that draw no static current [4]. During the preset phase P, when the control signal ϕ_{2i} is low, M9 turns on and M8 turns off, so that
the latch is reset. At this point, the bias current of the pre-amplifier stage is turned on via switch M5. When ϕ_{21} goes high, in order to enter the charge transfer phase, the voltage V_1 begins to raise. Once the virtual ground has been reached ($V_{in-} = V_{in+}$), the first zero-crossing is detected and V_1 raises sufficiently to flip the state of the latch.

As already mentioned in the previous section, the finite delay of the comparator causes an error in the detection of the virtual ground condition (overshoot). In this implementation the overshoot is corrected using the second DTDL, which allows to obtain a more accurate detection of the virtual ground condition.

The rising edge of V_{out1} creates a positive pulse on the signal $\phi_{2/1}$, which turns on M12 and turns off M13, resetting the second latch. After that, the virtual ground condition is detected for a second time and V_1 drops enough to flip the state of the second DTDL. At this point, the bias current of the pre-amplifier is shut off by disabling the transistor M5.

The detailed timing diagram is shown in Fig 3.19.

![Fig. 3.19 Time Diagram of the ZCD]
Note that the CTRL signal, shown in the time diagram, controls the switching on and off of the pre-amplifier stage, via transistor M5.

Unlike the ZCD presented in the reference [4], an additional circuit is needed to generate the control signal. The circuit consists of two falling edge detectors, controlled by a clock signal and connected to an SR latch. The inputs of the two detectors are V_{out1} and V_{out2}, while the inverted output is the signal that controls the gate of M5. The circuit is shown in Fig. 3.20.

![Fig. 3.20 Control signal implementation](image)

The detailed implementation of the falling edge detector is shown (in Fig. 3.21). The detector is composed of a NOR gate and two edge triggered D Flip-Flops, controlled by the same clock signal. This configuration was chosen for the simplicity of the reset phase and for the low number of transistor needed.

![Fig. 3.21 Edge Detector Falling](image)
3.2.4 Alternative ZCD Implementation

In addition to the previously described ZCD configuration, another implementation is presented (Fig. 3.22), with the purpose of reducing the systematic static offset of the comparator. In order to do so, the previous pre-amplifier with single-ended output is replaced by a differential input to differential output configuration. This pre-amplifier is implemented as a PMOS differential (M1 and M2) pair which imbalances a pair of cross-coupled current mirrors (M3, M18, M17 and M4), creating the differential output.

![Alternative Zero Cross Detector Implementation](image)

Fig. 3.22 Alternative Zero Cross Detector Implementation
Regarding the second stage, the working principle for the first DTDL is the same as described previously, since the voltage V_1 remains unchanged. Whereas, the principle of operation of the second DTDL changes, because the signal used is no more the voltage V_1 (but rather V_2).

In this implementation, the rising edge of the ZCD output V_{out1} causes a negative pulse on ϕ_{21} that resets the second latch. When ϕ_{21} goes high again, the voltage V_2 begins to raise, until the virtual ground condition is achieved for the second time and V_2 has raised enough to flip the state of the DTDL.

Note that the implementation of the second DTDL is slightly different from the first one, in fact, a current mirror (M15 and M16) was placed in the second latch in order to add a further voltage drop between the source of M10 and the drain of M12. As a result, the gate voltage required on the gate of M10, to make it conduct, increases. This modification was needed, due to the nature of the signal V_2, for the shift in the DC operating point.

The time diagram for the new implementation is shown in Fig. 3.23.

![Time diagram for the second ZCD Implementation](image)
Moreover, it could be observed that the extra-circuit for the control signal, needed to switch off the comparator, must be slightly modified. This is due to the fact that the signal $V_{out_{z}}$ is changed with respect to previous case. The modification consists of replacing the second falling edge detector with a rising edge one, in order to adapt to the new trend of the signal.

The implementation of the rising edge detector, shown in Fig. 3.24, is quite similar to the falling edge one, with the only difference that the final gate is an AND gate (instead of a NOR).

![Edge Detector Rising](image)

Fig. 3.24 Edge Detector Rising

3.2.5 Simulations

In order to see if the second implementation is actually decreasing the offset of the comparator, a ZCD offset test is performed, to choose the ZCD configuration that best fits our architecture. For ZCD offset estimation, the traditional techniques cannot be used, since the ZCD is affected by a dynamic offset, which is different from the static one, measured with these techniques.

According to [13], a different method (with a specific testbench) is proposed. For this type of simulations, a dedicated input must be provided. One input of the comparator is fixed at a certain threshold voltage x_{th}, while the other must be ladder-shaped, as shown in Fig 3.25.

The ladder-shaped signal can be generated either with a triangular shaped pulse followed by an ideal sample-and-hold circuit or with a dedicated block, written in Verilog-A. For each input value x_i, the comparator is activated and its output y_i is stored. For an ideal ZCD, for all input values below the threshold voltage, the output value y_i is 0, while for all the remaining is 1. The experimental setup in shown in Fig. 3.25.
Taking into account the device parameter mismatch, this behavior will randomly change.

\[P(y_i = 1) = P((x_i - x_{th}) > x_{off}) = \frac{n_i}{N} = z_i \]

(3.16)

Where \(N \) is the number of Monte-Carlo iterations and \(n_i \) is the number of runs in which the comparator output is 1 when \(x_i \) is applied. Thus, the statistical properties of \(x_{off} \) can be computed, plotting the normal probability distribution [13].

In order to generate a normal probability plot, the inverse of the cumulative normal distribution function is applied to the \(z_i \):

\[v_i = \phi^{-1}(z_i) \]

(3.17)

Where

\[\phi(x) = \frac{1}{2} \left[1 + \text{erf} \left(\frac{x}{\sqrt{2}} \right) \right] \]

(3.18)

The results of 100 Monte-Carlo analysis runs are given for both single ended and fully differential implementation, respectively in Fig. 3.26 and Fig. 3.27.

Ideally, the comparator threshold should be \(x_{th} = 0.9 \, V \), so in the simulations \(x_i \) is set in the interval:

\[x_i \in [0.85V, 0.95V] \]
Note that, in both Fig. 3.26 and Fig. 3.27, the blue lines in the normal probability plots represent the first order polynomial approximation \(z = p_1 x + p_2 \) of the acquired data. From the polynomial coefficients \(p_1 \) and \(p_2 \), the mean value \(\mu \) and the standard deviation \(\sigma \) of the distribution can be computed:

\[
\mu = -\frac{p_2}{p_1} \quad \sigma = \frac{1}{p_1} \quad (3.19)
\]
The data for both configurations are presented in the following table (Table 3.2).

<table>
<thead>
<tr>
<th>ZCD</th>
<th>(\mu) (mV)</th>
<th>(\sigma) (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single ended</td>
<td>885</td>
<td>3.2</td>
</tr>
<tr>
<td>Fully differential</td>
<td>884</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Table 3.2 Simulations Results for ZCD implementations

From the results of the simulations, it can be observed the mean value \(\mu \) and the standard deviation \(\sigma \) are practically the same in both configurations. From the results, we can conclude that the two implementations are equivalent.

On the other hand, it can be noticed that, analyzing the cumulative histograms, the hysteresis curve for the fully differential implementation is less pronounced with respect to the single one. For this reason, the fully differential configuration was chosen and implemented in the ZCBC.

3.3 Comparator

The comparator is a key block in ADC architecture, since it defines the accuracy and is one of the highest power consumers. It must be designed carefully in order to optimize power consumption, avoiding at the same time a degradation in the performance of the ADC [2]. Fig. 3.28 shows the schematic of the proposed solution for the comparator [14], a current-controlled dynamic-latch.

![Schematics of the Dynamic Latch](image-url)
The dynamic latch is formed by a NMOS differential pair (M2 and M3), which is loaded by positive feedback network based on a pair of cross-coupled inverters. When the control signal ϕ_s turns on, the differential pair transforms the input voltage into a current imbalance which is regenerated and latched by the feedback network to obtain a binary differential output voltage [14].

Then, the outputs of the comparator drive an RS latch, as shown in the Fig. 3.29, which gives the single ended output of the comparator V_{comp}, that will control the voltage reference circuit.

![Fig. 3.29 Schematic of the comparator](image)

3.4 SAR Logic

The purpose of the Successive Approximation Register (SAR) circuit is to determine the value of each bit of the ADC in a sequential manner, depending on the value of the comparator output.

If an N bit A/D converter is implemented, there are 2^N possible conversion output values, which means that the SAR needs at least 2^N states and so, as a minimum, N FFs.

The architecture proposed in [15], uses the minimum number of FFs and is based on the dependency of the state of each bit with the other bits state. The principle of operation of the SAR logic is very simple: the algorithm of the conversion starts with the activation of the Most Significant Bit (MSB), while all the other bits are 0. Then, going on with the conversion, the remaining bits are successively activated, while the value of the one activated just before is depending on the result of the comparator [2].

The basic structure of the SAR is a multiple input N bit shift register. At the initial step, in order to start the conversion, all the FFs are forced in the initialization state. Then, for
the next states, by adding a multiplexer and a decoder to every FF, each register (kth) has
the possibility to choose between three data inputs coming from:

- The output of the (k + 1)th FF (shift).
- The output of the comparator (cmp).
- The output of kth FF itself (k).

The selection will depend only on the current state and on the next states of the
following register. The schematic with the detailed implementation is shown in Fig. 3.30,
according to [2].

![Schematic of the SAR Logic](image)

Fig. 3.30 Schematic of the SAR Logic

Therefore, this configuration was chosen because it is a non redundant implementation,
since the minimum number of registers used allows die area optimization and the power
reduction.
3.5 Current sources

The current sources are probably the simplest analog blocks described in this report, but, at the same time, one of the most important, since together with the ZCD they replace the functionality of the traditional operational amplifier.

Furthermore, they represent a block of critical importance. In fact, variations in current, due to finite current source output resistance, create current ramp rate variations.

The output voltage non-linearity is mainly due to overshoot variations which are a consequence of the ramp rate changes. In order to reduce the output voltage non-linearity, the ramp rate should be almost constant and, to do this, a possible method is to increase the output resistance.

As a result, the current sources are implemented with a cascode stage, as shown in Fig. 3.31. In the figure, only the current sources connected to the positive output node are represented, but the two others, connected to the negative one, are realized exactly with the same principle.

![Current Sources Diagram](image)

The dimensions of the transistors, as well as, the bias voltages, must be carefully designed, in order to have the same ramp rate and the same current value for the current sources operating in the same phase.

In addition to this, in order to have a balanced design, one must take into account that the current sources, during the phase E2, should conduct a linear current with respect to...
the ones active during the coarse charge transfer phase, because, in this way, the undershoot error is reduced and, consequently, a higher accuracy can be achieved.

3.6 Voltage Reference

As already explained in section 2.4, the voltage reference circuit needs to be slightly modified with respect to the configuration used with the traditional operational amplifier, because the virtual ground condition is no more forced in a continuous time manner, but rather it is only detected twice per cycle by the ZCBC.

As a result, in order to have a proper charge transfer between the capacitors C_1 and C_2 on both sides, an extra phase is needed to reproduce the same functionality. The detailed schematic for the this new voltage reference circuit is shown in Fig. 3.32.

![Voltage reference circuit](image)

Fig. 3.32 Voltage reference circuit

During the phase ϕ_S, the capacitors C_1 are charged to the reference values. Then, when the phase ϕ_1 starts, since $C_1 = C_2$, half of charge from C_1 goes to C_2, thanks to a passive charge redistribution mechanism. Afterwards, during ϕ_2, the capacitors C_2 are connected to the rest of the circuit, through either switches ϕ_{2n} or ϕ_{2p}, depending on the output of the comparator. Finally, when the signal ϕ_3 goes high, the capacitors C_2 are discharged to the common mode voltage and the cycle starts again from ϕ_1. The cycle will be repeated N-1 times, where N is the number of bits of the ADC.

The complete timing diagram for the reference circuit in shown in Fig. 3.33.
A/D Converter based on Binary Search Algorithm

Fig. 3.33 Time diagram for the reference circuit
Chapter 4

Simulations & Results

4.1 Functional Simulations

In this first section of the Chapter, functional simulations are provided in order to check the correct functionality of the single blocks and, finally, the functionality of the whole architecture.

The first block to be tested is the above mentioned ZCBC, which replaces the Op-Amp functionality by using a comparator and two current sources for each side of the fully differential configuration. In Fig. 4.1 and Fig. 4.2, the results for the functional simulations are presented. The capacitors are set to 500ff, the input signal is a sine wave with a peak-to-peak amplitude of 1.6 V and the sampling frequency is set to 1MHz.

Fig. 4.1 shows the differential input (blue) and the differential output (red) of the ZCBC.

![Fig. 4.1 Input and Output voltage of ZCBC](image)

Furthermore, Fig. 4.2 shows the detailed behavior of the inputs(V_{in+} and V_{in-}) and the outputs (V_{out1} and V_{out2}) of the ZCD. Note that the signal V_{out2} directly controls the switching on/off phase of the current sources in E2, whereas for V_{out1}, a small extra-logic circuit is needed.
After the functionality of the ZCBC was confirmed, a functional simulation for the whole architecture was performed. The capacitor values are kept to 500fF and the same input signal is used. The sampling frequency is lowered to 166.6 KHz, since the voltage reference circuit is added to ZCBC. Thus, nine more cycles were required for each sampled input value to determine the output code. In Fig. 4.3, the differential input (red) and the differential output (blue) of the ZCBC are shown.
From Fig. 4.3, it can be noticed how the voltage references are added to or subtracted from the initial value of the output, depending on the result of the comparison V_{comp} (cmp). A detail of the comparison operation is shown in Fig 4.4. The two differential outputs (OUT_+ and OUT_-) and the cmp signal (red) are represented. Note that the cmp signal which goes high or low, depending on the values of OUT_+ (fuchsia) and OUT_- (green), setting the addition or the subtraction of voltage references for the next cycle.

![Fig. 4.4 Detail of Comparison](image)

4.2 Performance Simulations

The ADC was implemented as a 10 bits converter. The results of the performance simulations are summarized in the following table (Table 4.2). The sampling frequency was set to 166 kS/s and a sine wave with a peak-to-peak amplitude of 1.6V was applied to the inputs. In order to have a coherent sampling, as already explained in section 3.15, the input frequency was set to 16.4388kHz.

Note that the Figure of Merit (FOM) in the table, is computed with the following formula:

$$FOM = \frac{P}{2f_{BW}^{2}ENOB} \quad (4.1)$$
A/D Converter based on Binary Search Algorithm

<table>
<thead>
<tr>
<th>Technology</th>
<th>UMC 0.18 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Supply Voltage</td>
<td>1.8 V</td>
</tr>
<tr>
<td>Nominal Resolution</td>
<td>10 bits</td>
</tr>
<tr>
<td>Sampling Frequency</td>
<td>166.66 kS/s</td>
</tr>
<tr>
<td>DNL</td>
<td>+/- 1 LSB</td>
</tr>
<tr>
<td>INL</td>
<td>+/- 1 LSB</td>
</tr>
<tr>
<td>SNR</td>
<td>55.7 dB</td>
</tr>
<tr>
<td>SNDR</td>
<td>53.8 dB</td>
</tr>
<tr>
<td>ENOB</td>
<td>8.64 bits</td>
</tr>
<tr>
<td>Power consumption</td>
<td>57.3 µW</td>
</tr>
<tr>
<td>FOM</td>
<td>0.86pJ/step</td>
</tr>
</tbody>
</table>

Table 4.2 ADC Performance Summary

The plot of INL, obtained with the Matlab code in Appendix A, is shown in Fig. 4.5.

Fig. 4.5 INL Plot
The plot of DNL, obtained with the Matlab code in Appendix A, is shown in Fig. 4.8.

![DNL Plot](image)

Fig. 4.6 DNL Plot

The spectrum of the quantized signal is given in Fig. 4.5, with the number of samples of $M = 1024$.

![Spectrum of Quantizer Output](image)

Fig. 4.7 Spectrum of Quantized Output
The ADC simulated transfer curve compared with an ideal transfer curve of an 10 bits ADC is given in Fig. 4.6.

![ADC Transfer Curve](image)

Fig. 4.8 ADC Transfer Curve

Analyzing the results from Table 4.2, it can be observed that the ADC nominal resolution may be decreased from 10 to 9 bits, since the ENOB is 8.64. Therefore, the last shift register of the SAR logic can be removed and the sampling frequency can be increased from 166.6 kS/s to 185 kS/s, since is unnecessary to perform the last cycle of comparison. As a consequence, the FOM will become smaller, assuming that the ENOB remains approximately constant.
Chapter 5
Conclusions & Future Perspective

In this report, the comparator based switched capacitor technique was implemented in a Binary Search ADC in 180nm UMC standard CMOS technology. The proposed architecture eliminates the need for an Op-Amp in the circuitry and replaces its functionality with a combination of a comparator and current sources to realize the same charge transfer. This technique was used because it is more suitable for technology scaling.

All the analog building blocks of the ADC were implemented at a transistor level and simulated. Furthermore custom modifications were provided for some blocks to increase accuracy.

Afterwards, the whole ADC architecture was implemented using a sampling frequency of 166 kS/s and performance simulation results were presented in Table 4.2. The converter reaches 8.64 bits of accuracy, with a SNDR = 53.8 dB and consumes 60 µW of power. This performance is still not comparable with performance obtained with traditional Op-Amp, in fact, according to [2], the power consumption of a BSA ADC using a cascoded Op-Amp is 2 µW at 100 kS/s (measured on a chip) with a power supply of 1.2 V (CMOS 0.13 µm technology). However, some further modification can be done in the design to improve the ENOB and reduce the power consumption. For instance, since the highest power consuming block remains the ZCBC, reducing a bit the slope of the current ramps in phase E1 will result in an overall reduction of power consumption, without affecting the sampling frequency which was not pushed to the limit. A further improvement could be ZCD offset compensation. As explained in Chapter 3, traditional techniques for offset cancelation cannot be used since the offset in ZCDS is dynamic and not static, but a derivative technique, as explained in [4], can be implemented, increasing the accuracy and the performance of the detector.

Finally, it would be interesting to implement the same architecture in a more scaled technology (i.e. UMC 90 nm CMOS Technology), where the design of traditional Op-Amps poses more difficult challenges, in order to check how technology scaling affects the performance of ZCBCs and if they can be actually considered as an alternative configuration to Op-Amps in Binary Search ADCs.
A/D Converter based on Binary Search Algorithm
Acknowledgement

The presentation of this report is the occasion to thank Prof. Alexandre Schmid for giving me the opportunity to work in the Microelectronic Systems Laboratory (LSM), on such as an interesting and challenging project. I would especially like to thank my supervisor Nikola Katic for the time he spent to follow my project and for providing me all the help and the guidance I needed. Furthermore, I would like also to thank Alberto Rodriguez Perez for giving precious advices and for his constant encouragement.

Finally, I would like to express all my gratitude to my family for supporting me throughout my whole studies and for having always been close to me even in the distance.
References

Appendix

Appendix A

This appendix contains MATLAB® code for all data processing, including ZCD offset calculation and SNR/SNDR measurements.

A.1 SNR and SNDR calculation

function \[s2nd,s2n,ydB\] = fcn_sndr_v1(S,fvec)

\[
% [S2ND, S2N, YDB] = SNDR(S,[M,Finput,Fband,Fs])
% S : input signal
% M : size of PSD vector
% Finput : input sinusoidal freq.
% Fband : bandwith
% Fs : sampling freq.
\]

M=fvec(1);
Finput=fvec(2);
Fband=fvec(3);
Fs=fvec(4);
df = Fs/M;
f = [0:1:M-1]*df:

win = kaiser(M,25);
Ns = max(size(S));
x = S(Ns-M+1:Ns);
y = x(1:M).*win(1:M);
yfft = fft(y);
ymag = sqrt(abs(yfft.*conj(yfft)))/(M/8);

% Lobe calculation
Asl=175
wml=(12*(Asl+12)/(155*(M-1)))*M:
lobe=round(wml/2)+1:

% find basic signal
f1=round((Finput/Fs)*M);
fb=round((Fband/Fs)*M);
A/D Converter based on Binary Search Algorithm

if (f1 < (lobe+1)) % near dc component
 [ymax,fmax]=max(ymag2(1:f1+5));
 f2=fmax+lobe;
 spwr=sum(ymag2(1:f2));
 ndpwr=sum(ymag2(1:fb)) - spwr;
else % far from dc component
 [ymax,fmax]=max(ymag2(lobe+1:f1+10));
 fmax=fmax+lobe;
 f1=fmax-lobe; f2=fmax+lobe;
 spwr=sum(ymag2(f1:f2));
 ndpwr=sum(ymag2(lobe:fb)) - spwr+(f2-f1)*(ymag2(f2)+ymag2(f1))/2
end

fMain = round((Finput/Fs)*M)+1;
fBW = fb+1;
Nh = floor(fBW/fMain);
Nh
dlobe = lobe;
% define a new lobe for distortion components
for jj = 2:(Nh)
 fh = jj*fMain-jj+1;
 fa = fh-dlobe;
 fb = fh+dlobe;
 dpow_h(jj) = sum(ymag2(fa:fb));
 rep_noi(jj) = (fb-fa)*(ymag2(fb)+ymag2(fa))/2;
end

dpow = sum(dpow_h)-sum(rep_noi);

% final calculation of SNR and ANDR
s2nd = 10*log10(spwr/ndpwr);
s2n = 10*log10(spwr/(ndpwr-dpow));

function SNR_SDR(S)

 M = 1024;
 Fin = 16438.8;
 Fs = 166666.666;
 Fbw = Fs/2;

 Fvec = [M,Fin,Fbw,Fs];
A/D Converter based on Binary Search Algorithm

\[[\text{s2nd}, \text{s2n}, \text{ydB}] = \text{fcn sndr v1}(S, \text{Fvec}):\]

\begin{verbatim}
s2nd
s2n
ydB(1:M/2);
freq_range = 0:Fs/(M-1):Fs/2;
figure (1)
subplot(2,1,1)
plot(freq_range,ydB(1:M/2));
title('Spectrum of Quantizer Output')
xlabel('f in [Hz]')
ylabel('Amplitude in dB')
end
\end{verbatim}

A.2 ZCD Offset Calculation

function ZCDoffset (x, ydata)

\begin{verbatim}
M1 = sum_up(ydata);
M = M1.';
y = sum(M)/100;

figure(1)
subplot(2,1,1)
plot(x,y);
title('Result of MonteCarlo simulation: cumulative hystogram');
xlabel('xi[V]');
ylabel('ni/N');

xdata = x.';
v = sqrt(2)*erfinv(y(1:512)*2-1);
i = find (v>-10 & v<10);
p = polyfit(xdata(i),v(i),1);
subplot(2,1,2)
plot(xdata(i),v(i),xdata(i), polyval(p,xdata(i)));
title ('Normal probability plot')
xlabel('xi [V]');
ylabel('ni/N');

sigma=1/p(1);
mu=-p(2)/p(1);
end
\end{verbatim}
function matrix=sum_up(V1)

for k=1:100
 for j=1:512
 matrix(j,k)=V1(j+512*(k-1));
 end
end

A.3 INL and DNL Calculation

function INL (in,out)

x=0:1:1023;

x1=reshape(x,1024,1);
y=(-0.8):0.6/1023:0.8;
y1=reshape(y,1024,1);
[p.s] = polyfit (y1,x1,1);

plot(in(1:1024),out(1:1024),y1,polyval(p,y1),'r');
title('ADC transfer curve')
xlabel('Input voltage')
ylabel('Output code')

figure(2)
stairs(in(1:1024),out(1:1024));
figure(3)
stairs(y1,polyval(p,y1));
for i=1:1024
 inl (i)= -(out(i)-p(1)*in(i)-p(2));
end
figure (4)
plot(out(1:1024),inl);
title('Integral nonlinearities')
xlabel('Output code')
ylabel('INL')
end

function DNL (in,out)

s=0;

for i=1:1024
 if (out(i+1)>out(i))
 dnl(i) = -(out(i+1)-out(i)-1-s);
 s=0;
 end
end
else
s=s+0.5;
dnl(i)=0;
end
end

figure (1)
plot(out(1:1024),dnl(1:1024));
title('Differential nonlinearities')
xlabel('Output code')
ylabel('DNL')
end

Appendix B

This second appendix contains the Verilog-A code for all data acquisition and processing, necessary in order to evaluate ADC performances.

B.1 Output code acquiring for 10 Bits ADC

// Verilog-A for ADC data acquiring

`include "constants.vams"
`include "disciplines.vams"

module sample_bits (CLK_BITS, BITS);
input CLK_BITS;
input [0:9] BITS;

electrical CLK_BITS;
electrical [0:9] BITS;

integer s_BITS [0:9]; // sampling bits values
real OUT; // Output decimal value calculated from the bits
integer filedesc;
integer i;
analog
begin
 @(initial_step) //file opening
 begin
 if (analysis("tran"))
 begin
 filedesc=$fopen("/home/ferrara/data.csv","a");
 end
 end
end
if(analysis("tran"))
begin
 @(cross(V(CLK_BITS) – 0.9, 1))
 begin
 for (i=0, i<10: i=i+1)
 begin
 s_BITS[i] = (V(BITS[i]) > 0.9) ? 1 : 0;
 end
 OUT=0;
 for(i=10: i>0: i=i-1)
 begin
 OUT = OUT + s_BITS[i-1]*pow(2,i-1);
 end
 $fstrobe(filedesc, OUT);
 end
end

@final_step // file closing
begin
 if(analysis("tran"))
 begin
 $fclose(filedesc);
 end
end
endmodule

B.2 Data acquiring for ZCD offset estimation

// VerilogA for Monte–Carlo simulation

`include "constants.vams"
`include "disciplines.vams"

module data_monte_carlo (CLK, Vout, Vin);

input CLK;
input Vout;
input Vin;

electrical CLK;
electrical Vout;
electrical Vin;

integer fileDesc;
integer fileDesc1;

real sampling_CLK;
real sampling_Vout;
A/D Converter based on Binary Search Algorithm

real sampling_Vin;

analog
begin
@ (initial_step)
begin
if (analysis("tran"))
begin
 fileDesc =$fopen("/home/fferrara/ydata.csv","a");
 fileDesc1 =$fopen("/home/fferrara/xdata.csv");
end
end

if (analysis("tran"))
begin
 sampling_CLK = V(CLK) - 0.9;
 @ (cross(sampling_CLK, +1))
 begin
 sampling_Vout = (V(Vout) > 0.9) ? 1 : 0;
 sampling_Vin = V(Vin);
 $fstrobe(fileDesc1, sampling_Vin);
 $fstrobe(fileDesc, sampling_Vout);
 end
end
@ (final_step)
begin
if (analysis("tran"))
begin
 $fclose(fileDesc);
 $fclose(fileDesc1);
end
end
endmodule

B.3 Ladder-shaped input for offset calculation

`include "constants.vams"
`include "disciplines.vams"

module ladder (clk, Out);

input clk;
output Out;

electrical clk;
electrical Out:
A/D Converter based on Binary Search Algorithm

parameter real Vamplitude=0.1;
parameter integer N=256;
parameter real stepsize= Vamplitude/N;

integer i, hold, h:

analog begin
 @(initial_step) begin
 i = 0; h = 0;
 end
 @(cross(V(clk),+1))
 begin
 hold = i;
 if(i <= N && h != 1)
 begin
 i = i+1;
 if(i == N)
 begin
 h = 1;
 end
 end
 else
 begin
 i = i-1;
 if (i==0)
 begin
 h=0;
 end
 end
 end
 V(Out) <+ hold*stepsize+0.85;
end
endmodule